Дан треугольник abc cd биссектриса внешнего угла треугольника при вершине b и пересекает сторону ab в точке d из точки к прямой bc проведён перпендикуляр dk сравните отрезки dk и bc
Коло називається описаним навколо трикутника, якщо всі вершини трикутника розміщені на колі.
Центр кола рівновіддалений від усіх вершин, тобто повинен розташовуватися в точці перетину серединних перпендикулярів до сторін трикутника.
Навколо будь-якого трикутника можна описати коло, оскільки серединні перпендикуляри до сторін перетинаються в одній точці.
Для гострокутного трикутника центр кола знаходиться в трикутнику.
Інша ситуація з прямокутним і тупокутним трикутниками.
Коло, вписане в трикутник
Коло називається вписаним у трикутник, якщо всі сторони трикутника дотикаються до кола.
Центр кола рівновіддалений від усіх сторін, тобто повинен розміщуватися в точці перетину бісектрис трикутника.
У будь-який трикутник можна вписати коло, оскільки бісектриси трикутника перетинаються в одній точці.
Оскільки бісектриси кутів трикутника завжди перетинаються всередині трикутника, для всіх трикутників центр уписаного кола розміщується в трикутниках.
У рівностороннього трикутника збігаються бісектриси, медіани та висоти, тобто ці відрізки є також серединними перпендикулярами. Це означає, що центри описаного і вписаного кола збігаються.
Розв'яжи:
1. У прямокутний трикутник ABC вписано коло, ∠B — прямий. Обчисли кути трикутника A та C, а також кути, що виходять з центра кола, якщо один з них ∠ FOE = 146°.
Коло називається описаним навколо трикутника, якщо всі вершини трикутника розміщені на колі.
Центр кола рівновіддалений від усіх вершин, тобто повинен розташовуватися в точці перетину серединних перпендикулярів до сторін трикутника.
Навколо будь-якого трикутника можна описати коло, оскільки серединні перпендикуляри до сторін перетинаються в одній точці.
Для гострокутного трикутника центр кола знаходиться в трикутнику.
Інша ситуація з прямокутним і тупокутним трикутниками.
Коло, вписане в трикутник
Коло називається вписаним у трикутник, якщо всі сторони трикутника дотикаються до кола.
Центр кола рівновіддалений від усіх сторін, тобто повинен розміщуватися в точці перетину бісектрис трикутника.
У будь-який трикутник можна вписати коло, оскільки бісектриси трикутника перетинаються в одній точці.
Оскільки бісектриси кутів трикутника завжди перетинаються всередині трикутника, для всіх трикутників центр уписаного кола розміщується в трикутниках.
У рівностороннього трикутника збігаються бісектриси, медіани та висоти, тобто ці відрізки є також серединними перпендикулярами. Це означає, що центри описаного і вписаного кола збігаються.
Розв'яжи:
1. У прямокутний трикутник ABC вписано коло, ∠B — прямий. Обчисли кути трикутника A та C, а також кути, що виходять з центра кола, якщо один з них ∠ FOE = 146°.
ответ:Коло, описане навколо трикутника
Коло називається описаним навколо трикутника, якщо всі вершини трикутника розміщені на колі.
Центр кола рівновіддалений від усіх вершин, тобто повинен розташовуватися в точці перетину серединних перпендикулярів до сторін трикутника.
Навколо будь-якого трикутника можна описати коло, оскільки серединні перпендикуляри до сторін перетинаються в одній точці.
Для гострокутного трикутника центр кола знаходиться в трикутнику.
Інша ситуація з прямокутним і тупокутним трикутниками.
Коло, вписане в трикутник
Коло називається вписаним у трикутник, якщо всі сторони трикутника дотикаються до кола.
Центр кола рівновіддалений від усіх сторін, тобто повинен розміщуватися в точці перетину бісектрис трикутника.
У будь-який трикутник можна вписати коло, оскільки бісектриси трикутника перетинаються в одній точці.
Оскільки бісектриси кутів трикутника завжди перетинаються всередині трикутника, для всіх трикутників центр уписаного кола розміщується в трикутниках.
У рівностороннього трикутника збігаються бісектриси, медіани та висоти, тобто ці відрізки є також серединними перпендикулярами. Це означає, що центри описаного і вписаного кола збігаються.
Розв'яжи:
1. У прямокутний трикутник ABC вписано коло, ∠B — прямий. Обчисли кути трикутника A та C, а також кути, що виходять з центра кола, якщо один з них ∠ FOE = 146°.
Відповідь:
∠ A=___ °
∠ C= ___°
∠EOD =___ °
∠FOD =___ °
2. Знайди трикутник, у який вписане коло.
Відповідь: 1) DEF, 2) STU, 3) ABC, 4) KLM, 5)EFG, 6) PRT.
Знайди трикутники, навколо яких описано коло.
Відповідь: 1) ABC, 2) KLM, 3) PRT, 4) DEF, 5) MNL, 6) EFG.
Домашнє завдання.03.04.2020 р. Скласти конспект параграфа 24.
Домашнє завдання.08.04.2020 р. Повторити параграф 24. Виконати вправи № 641, № 649.
ответ:Коло, описане навколо трикутника
Коло називається описаним навколо трикутника, якщо всі вершини трикутника розміщені на колі.
Центр кола рівновіддалений від усіх вершин, тобто повинен розташовуватися в точці перетину серединних перпендикулярів до сторін трикутника.
Навколо будь-якого трикутника можна описати коло, оскільки серединні перпендикуляри до сторін перетинаються в одній точці.
Для гострокутного трикутника центр кола знаходиться в трикутнику.
Інша ситуація з прямокутним і тупокутним трикутниками.
Коло, вписане в трикутник
Коло називається вписаним у трикутник, якщо всі сторони трикутника дотикаються до кола.
Центр кола рівновіддалений від усіх сторін, тобто повинен розміщуватися в точці перетину бісектрис трикутника.
У будь-який трикутник можна вписати коло, оскільки бісектриси трикутника перетинаються в одній точці.
Оскільки бісектриси кутів трикутника завжди перетинаються всередині трикутника, для всіх трикутників центр уписаного кола розміщується в трикутниках.
У рівностороннього трикутника збігаються бісектриси, медіани та висоти, тобто ці відрізки є також серединними перпендикулярами. Це означає, що центри описаного і вписаного кола збігаються.
Розв'яжи:
1. У прямокутний трикутник ABC вписано коло, ∠B — прямий. Обчисли кути трикутника A та C, а також кути, що виходять з центра кола, якщо один з них ∠ FOE = 146°.
Відповідь:
∠ A=___ °
∠ C= ___°
∠EOD =___ °
∠FOD =___ °
2. Знайди трикутник, у який вписане коло.
Відповідь: 1) DEF, 2) STU, 3) ABC, 4) KLM, 5)EFG, 6) PRT.
Знайди трикутники, навколо яких описано коло.
Відповідь: 1) ABC, 2) KLM, 3) PRT, 4) DEF, 5) MNL, 6) EFG.
Домашнє завдання.03.04.2020 р. Скласти конспект параграфа 24.
Домашнє завдання.08.04.2020 р. Повторити параграф 24. Виконати вправи № 641, № 649.