Дан треугольник ABC, F ϵ AB, N ϵ AC, AB : AF = AC : AN = 9 : 4. Через прямую BC проходит плоскость β, не совпадающая с плоскостью треугольника ABC. 1) Докажите, что FN II β.
№1. Треугольники ВКМ и BKN равны по стороне и двум прилежащим углам.
Значит BM = BN. Значит тр-ки BMN и АВС подобны по 1 признаку подобия(по 2-м пропорциональным сторонам и углу между ними.)
Значит у них равны все углы, то есть MN||АС, значит MN перпендикулярно ВК,
что и требовалось доказать.
Угол BNK = углу BMK = 110 град. (из равенства тех же тр-ов: BKM и BKN). №2. Во влажениях! №3. В Δ АВС угол АВС равен 90-15=75° ВΔ ВАД угол АВД равен 75-15=60 ВДА=90-60=30° АВ, как противолежащая углу 30, равна половине ВД. ВД=2*3=6 см Рассмотрим Δ ВДС. В нем равные углы при основании ВС. Поэтому Δ ВДС - равнобедренный. ДС=ВД=6 см. Сумма двух сторон треугольника должна быть больше третьей стороны. Сторона ВД+ДС=12см ВС < 12см Длина стороны ВС не может быть равна 12 см
Дано: < C =90° ; CB =a =6 см ; <ABC =β =60° ; <SAO =<SBO =<SCO = α =30° ; S _ вершина пирамиды SO ┴ (ABC) , O∈(ABC).
V =1/3*S(ABC) *SO ---> ? Если все боковые ребра пирамиды наклонены к плоскости основания под одинаковым углом (в данном случае α =30° ) , то высота пирамиды проходит через центр окружности , описанного около основания . Здесь этот центр O середина гипотенузы . BA = BC/cosβ = a/cosβ ; S(ABC) =1/2*BA*BC*sinβ = 1/2*a/cosβ*a*sinβ =1/2*a²*tqβ . *** или S(ABC) =1/2*AC*BC =1/2*a*atqβ =1/2*a²*tqβ *** SO = OB*tqα = 1/2*BA*tqα =1/2*a/cosβ*tqα ; V =1/3*S(ABC) *SO = 1/3*1/2*a²*tqβ *1/2*a/cosβ*tqα ; V = (1/12)a³*tqβ*tqα/cosβ . ***1/12*a³*sinβ*tqα/cos²β ***
При a =6 см ; β =60° ; α =30° получится : V= (1/12)a³*tqβ*tqα/cosβ =(1/12)*6³*tq60°*tq30°/cos60° =(1/12)*6³ *2 =36 (см³) .
S(ABB₁A₁) ---> ? ABB₁A₁ прямоугольник . S = S(ABB₁A₁) = AB*BB₁ =AB*H ; AB _хорда на нижней основ; Из ΔAOB : AB=2*(Rsinα) . H = Rtqβ ; S =AB*H=2*Rsinα*Rtqβ =2R²sinα*tqβ . при R =10 см , α =60° , β =30° получится : S =2R²sinα*tqβ =2*10²sin60°*tq30° = 2*10²*√3/2*1/√3 = 100 (см²) . 3) Дано: правильная пирамида FABC , F_вершина .
Доказать BF ┴ AC . Пусть FO ┴ (ABC) , где O основание высоты FO, т.е. BO проекция ребра BF на плоскость треугольника ABC . AC ┴ BM [ BM высота (медиана , биссектриса) ] ⇒AC ┴ BO ⇒AC ┴ BF (теорема трех перпендикуляров) .
Значит BM = BN. Значит тр-ки BMN и АВС подобны по 1 признаку подобия(по 2-м пропорциональным сторонам и углу между ними.)
Значит у них равны все углы, то есть MN||АС, значит MN перпендикулярно ВК,
что и требовалось доказать.
Угол BNK = углу BMK = 110 град. (из равенства тех же тр-ов: BKM и BKN). №2. Во влажениях! №3. В Δ АВС угол АВС равен
90-15=75°
ВΔ ВАД угол АВД равен
75-15=60
ВДА=90-60=30°
АВ, как противолежащая углу 30, равна половине ВД.
ВД=2*3=6 см
Рассмотрим Δ ВДС.
В нем равные углы при основании ВС.
Поэтому Δ ВДС - равнобедренный.
ДС=ВД=6 см.
Сумма двух сторон треугольника должна быть больше третьей стороны.
Сторона ВД+ДС=12см
ВС < 12см
Длина стороны ВС не может быть равна 12 см
S _ вершина пирамиды SO ┴ (ABC) , O∈(ABC).
V =1/3*S(ABC) *SO ---> ?
Если все боковые ребра пирамиды наклонены к плоскости основания под одинаковым углом (в данном случае α =30° ) , то высота пирамиды проходит через центр окружности , описанного около основания . Здесь этот центр O середина гипотенузы .
BA = BC/cosβ = a/cosβ ;
S(ABC) =1/2*BA*BC*sinβ = 1/2*a/cosβ*a*sinβ =1/2*a²*tqβ .
*** или S(ABC) =1/2*AC*BC =1/2*a*atqβ =1/2*a²*tqβ ***
SO = OB*tqα = 1/2*BA*tqα =1/2*a/cosβ*tqα ;
V =1/3*S(ABC) *SO = 1/3*1/2*a²*tqβ *1/2*a/cosβ*tqα ;
V = (1/12)a³*tqβ*tqα/cosβ . ***1/12*a³*sinβ*tqα/cos²β ***
При a =6 см ; β =60° ; α =30° получится :
V= (1/12)a³*tqβ*tqα/cosβ =(1/12)*6³*tq60°*tq30°/cos60° =(1/12)*6³ *2 =36 (см³) .
2) R =OA =OB = 10 см ; <AOB =2α =2*60° =120° ; <O₁CD = β =30° ;
(ABB₁A₁) | | OO₁
S(ABB₁A₁) ---> ?
ABB₁A₁ прямоугольник .
S = S(ABB₁A₁) = AB*BB₁ =AB*H ; AB _хорда на нижней основ;
Из ΔAOB : AB=2*(Rsinα) .
H = Rtqβ ;
S =AB*H=2*Rsinα*Rtqβ =2R²sinα*tqβ .
при R =10 см , α =60° , β =30° получится :
S =2R²sinα*tqβ =2*10²sin60°*tq30° = 2*10²*√3/2*1/√3 = 100 (см²) .
3) Дано: правильная пирамида FABC , F_вершина .
Доказать BF ┴ AC .
Пусть FO ┴ (ABC) , где O основание высоты FO, т.е. BO проекция ребра BF на плоскость треугольника ABC .
AC ┴ BM [ BM высота (медиана , биссектриса) ] ⇒AC ┴ BO ⇒AC ┴ BF (теорема трех перпендикуляров) .