Пусть трапеция АБСД, О-точка пересечения диагоналей, К- точка пересечения продолжений боковых сторон. Проведем через точку О отрезок МН параллельный большему основанию АД. Достаточно доказать , что ОМ=ОН, тогда КО -луч на котором лежит медиана треугольника КАД к основанию АД. (Медиана,как известно, - геометрическое место точек , которые делят пополам отрезки заключенные между сторонами КА и КД и параллельные АД). Докажем , что ОМ=ОН. Рассмотрим Треугольники БАД и БМО. Они , очевидно подобны и коэффициент подобия равен альфа =отношению высот этих тпеугольников. Т.е МО=альфа*АД. Но тоже самое можно написать и для треугольников САД и СОН. Получим ОН=альфа * АД Значит ОМ=ОН, что и доказывает утверждение.
Поясняю, что такое альфа : альфа -коэффициент подобия. Здесь: отношение высоты треугольника БМО к высоте треугольника БАД. Понятно, что у треугольников СОН и САД коэффициент подобия такой же, так как высоты у них такие же.
В лесу росли пихты, ели и берёзы.
Пихты, ели, берёзы - однородные подлежащие.
На экскурсию поедут ученики и родители.
Ученики, родители - однородные подлежащие.
В остальных предложениях:
Миша заболел, но быстро поправился.
Заболел, поправился - однородные сказуемые.
По утрам густой туман покрывал и лес, и скалы, и ближайшие острова.
Лес, скалы, острова - однородные дополнения.
Цветы пахли не резко, а нежно.
Резко, нежно - однородные обстоятельства.
Снег везде почернел, пропитался водой.
Почернел, пропитался - однородные сказуемые.
Достаточно доказать , что ОМ=ОН, тогда КО -луч на котором лежит медиана треугольника КАД к основанию АД. (Медиана,как известно, - геометрическое место точек , которые делят пополам отрезки заключенные между сторонами КА и КД и параллельные АД).
Докажем , что ОМ=ОН. Рассмотрим Треугольники БАД и БМО.
Они , очевидно подобны и коэффициент подобия равен альфа =отношению высот этих тпеугольников.
Т.е МО=альфа*АД. Но тоже самое можно написать и для треугольников
САД и СОН. Получим ОН=альфа * АД
Значит ОМ=ОН, что и доказывает утверждение.
Поясняю, что такое альфа : альфа -коэффициент подобия. Здесь: отношение высоты треугольника БМО к высоте треугольника БАД. Понятно, что у треугольников СОН и САД коэффициент подобия такой же, так как высоты у них такие же.