Дан треугольник ABC и координаты вершин этого треугольника определи длины сторон треугольника и укажи вид этого треугольника A(-8;1)B(-5;5) и C(-2;1). AB= BC= AC= Треугольник ABC разносторонний равносторонний равнобедренный
1-Ло́маная (ломаная линия) — геометрическаяфигура, состоящая из отрезков, последовательно соединенных своими концами.
2-Ломаная — геометрическая фигура, состоящая из отрезков, последовательно соединенных своими концами. Замкнутую плоскую ломаную называют многоугольником. Вершина - вершина угла, точка пересечения двух сторон. Сторона - отрезок, соединяющий две его соседние вершины. Диагональ - линия, проведенная из одного угла в другой. Периметр - сумма длин всех сторон.
3-ыпуклым многоугольником называется многоугольник, обладающий тем свойством, что все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. Это углы, образованные сторонами выпуклого многоугольника.
4-Сумма углов треугольника - 180 градусов.
Докажем, что сумма углов выпуклого n-угольника равна 180(n-2) градусам. Выберем одну из вершин и проведём из неё n-2 диагонали. Они разделят n-угольник на n-2 треугольника. Сумма углов каждого треугольника равна 180 градусам, сумма углов n-угольника равна сумме углов всех треугольников. Значит, сумма углов выпуклого n-угольника - 180(n-2) градусов, что и требовалось доказать.
ВН=h -высота параллелограмма, ВD - другая диагональ параллелограмма. Пусть одна часть равна х, тогда по условию АМ=3х, МD=2х. Диагональ ВD делит его на два равных треугольника, площади которых также равны, S(АВD)=S(ВСD)= 30 см². Высота ВН разделила ΔАВD на два треугольника с одной высотой h. Определим площадь каждого из этих треугольников. S(АВН)=0,5·АМ·ВМ=0,5·3х·h=1,5хh. S(ВМН)=0,5·МD·ВН=0,5·2х·h=хh Сумма площадей этих треугольников равна площади ΔАВD=30 см². 1,5хh+хh=30, 2,5хh=30, h=30/2,5х=12/х. Вычислим площадь ΔАВМ. S(АВМ)=0,5·АМ·h=0,5·3х·12/х=0,5·3·12=18 см². ответ: 18 см².
2-Ломаная — геометрическая фигура, состоящая из отрезков, последовательно соединенных своими концами.
Замкнутую плоскую ломаную называют многоугольником.
Вершина - вершина угла, точка пересечения двух сторон.
Сторона - отрезок, соединяющий две его соседние вершины.
Диагональ - линия, проведенная из одного угла в другой.
Периметр - сумма длин всех сторон.
3-ыпуклым многоугольником называется многоугольник, обладающий тем свойством, что все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.
Это углы, образованные сторонами выпуклого многоугольника.
4-Сумма углов треугольника - 180 градусов.
Докажем, что сумма углов выпуклого n-угольника равна 180(n-2) градусам. Выберем одну из вершин и проведём из неё n-2 диагонали. Они разделят n-угольник на n-2 треугольника. Сумма углов каждого треугольника равна 180 градусам, сумма углов n-угольника равна сумме углов всех треугольников. Значит, сумма углов выпуклого n-угольника - 180(n-2) градусов, что и требовалось доказать.
Пусть одна часть равна х, тогда по условию АМ=3х, МD=2х.
Диагональ ВD делит его на два равных треугольника, площади которых также равны, S(АВD)=S(ВСD)= 30 см².
Высота ВН разделила ΔАВD на два треугольника с одной высотой h.
Определим площадь каждого из этих треугольников.
S(АВН)=0,5·АМ·ВМ=0,5·3х·h=1,5хh.
S(ВМН)=0,5·МD·ВН=0,5·2х·h=хh
Сумма площадей этих треугольников равна площади ΔАВD=30 см².
1,5хh+хh=30,
2,5хh=30,
h=30/2,5х=12/х.
Вычислим площадь ΔАВМ.
S(АВМ)=0,5·АМ·h=0,5·3х·12/х=0,5·3·12=18 см².
ответ: 18 см².