Дан треугольник ABC и координаты вершин этого треугольника. Определи длины сторон треугольника и укажи вид этого треугольника. A(8;−1), B(5;−5) и C(2;−1).
Пусть основание АВ, вершина, из которой проведены медиана и высота - С, середину АВ обозначим М, основание высоты К (СК - высота к АВ). Опишем вокруг АВС окружность и продлим СМ и СК до пересечения с ней. Пусть это точки, соответственно Е для СМ и Р для СК.
Мы знаем, что дуги АЕ и ВР равны.
Поэтому ЕР II AB
=> ЕР перпендикулярно СР,
=> EC - диаметр,
и => М - центр окружности. В самом деле, АМ = МВ, но АВ не перпендикулярно ЕС, а это возможно, только если М - цетр окружности (можно указать на равенство СК и КР, поэтому СМ = МС, и опять - М - центр)
Пусть основание АВ, вершина, из которой проведены медиана и высота - С, середину АВ обозначим М, основание высоты К (СК - высота к АВ). Опишем вокруг АВС окружность и продлим СМ и СК до пересечения с ней. Пусть это точки, соответственно Е для СМ и Р для СК.
Мы знаем, что дуги АЕ и ВР равны.
Поэтому ЕР II AB
=> ЕР перпендикулярно СР,
=> EC - диаметр,
и => М - центр окружности. В самом деле, АМ = МВ, но АВ не перпендикулярно ЕС, а это возможно, только если М - цетр окружности (можно указать на равенство СК и КР, поэтому СМ = МС, и опять - М - центр)
Итак ,мы имеем ПРЯМОУГОЛЬНЫЙ треугольник АВС, угол АСВ = 90 градусов.
Из равенства дуг СВ и ВР (мы уже ДОКАЗАЛИ, что АВ - диаметр, пепендикулярный СР) следует, что угол СЕР в 2 раза больше ВСК,
то есть если считать угол ВСК = 5*х, то
угол ЕСР = 8*х, угол СЕР = 10*х.
Но угол ЕСР + угол СЕР = 90 градусов, откуда х = 5 градусов, угол САВ = угол КСВ = 5*х = 25 градусов, угол КВС = 90 - 25 = 65 градусов.
ответ углы треугольника 25, 65 и 90 градусов.
Объём шара считается по формуле:
V_{1}=\frac{4}{3}\pi*R^3
На рисунке видно AB - диаметр шара и высота цилиндра.
V_{1}=\frac{4}{3}\pi*(R_{1})^3
Пусть - радиус шара. Тогда объём шара равен:
Объём цилиндра:
V_{2}=\pi*r^2*h
Где r - радиус основания цилиндра, h- высота цилиндра.
Высота цилиндра вдвое больше радиуса(т.к. высота есть диаметр круга(по условию))=
Т.к. Осевым сечением цилиндра является квадрат, то половина высоты цилиндра будет равна радиусу основания цилинадра. Тоесть
r=\frac{h}{2}=\frac{2R_1}{2}=R_1
Теперь объём цилиндра:
V_2=\pi*(R_1)^2*2R_1=2\pi*R_1^3
\frac{V_1}{V_2}=\frac{\frac{4}{3}\pi*R_1^3}{2\pi*R_1^3}=\frac{4}{3*2}=\frac{2}{3}