Дан треугольник abc, известно, что угол c — прямой, ca= 6 см, cb=8 см. изобрази соответствующий рисунок. вычисли ab и напиши тригонометрические соотношения угла b. ответ: ab= см. tgb= sinb= cosb= (дроби не сокращай).
Трапеция АВСД, ВС=3, АД=10, АС=5, ВД=12, из точки С проводим линию параллельную ВД до пересечения ее с продолжением основания АД а точке К, ДВСК-параллелограмм, ВД=СК=12, ДК=ВС=3, АК=АД+ДК=10+3=13, треугольник АСК, полупериметр (р)=(АС+СК+АК)/2=(5+12+13)/2=15, площадь АСК=корень(р*(р-АС)*(р-СК)*(р-АК))=корень(15*10*3*2)=30, площадь АСК=площадь АВСД если проведем высоту СН на АД то площадь АВСД=(ВС(ДК)+АД)*СН/2=(ДК+АД)*СН/2=АК*СН/2, площадь АВСД=(АС*ВД)*sin углаСОД/2 (О-пересечение диагоналей), 30=(5*12)*sin углаСОД/2, 60=60*sin углаСОД, sin углаСОД=1, что соответствует 90, диагонали пересекаются под углом 90.
Будем использовать следующие известные факты (они все легко доказываются): 1) Угол между биссектрисами двух углов треугольника равен 90° плюс половина третьего угла треугольника. 2) Биссектриса треугольника пересекает его описанную окружность в точке, лежащей на серединном перпендикуляре к той стороне, к которой проведена биссектриса. 3) Вписанный в окружность угол в 60° опирается на хорду равную R√3.
Пусть E и F - точки пересечения биссектрис треугольников ABD и АСD соответственно. Тогда из этих треугольников в силу 1) получаем ∠AED=∠AFD=90°/2+90°=135°. Значит AEFD - вписанный 4-угольник и радиус окружности описанной вокруг него равен AD/(2sin∠AED))=2/(2/√2)=√2=EF. Центр О этой окружности лежит на серединном перпендикуляре к AD и OH=1 т.к. HD=1 и OD=√2, где H - середина AD. Кроме того, треугольник OEF - равносторонний. С другой стороны, в силу факта 2) прямые BE и CF также пересекаются в точке О, т.к. прямоугольные треугольники ABD и ACD вписаны в окружность с центром H и радиусом HD=1. Таким образом, угол ∠BOC=∠EOF=60°, а значит по свойству 3) BC=√3.
ВС=3, АД=10, АС=5,
ВД=12, из точки С проводим линию параллельную ВД до пересечения ее с продолжением основания АД а точке К, ДВСК-параллелограмм, ВД=СК=12, ДК=ВС=3, АК=АД+ДК=10+3=13, треугольник АСК,
полупериметр (р)=(АС+СК+АК)/2=(5+12+13)/2=15, площадь АСК=корень(р*(р-АС)*(р-СК)*(р-АК))=корень(15*10*3*2)=30, площадь АСК=площадь АВСД если проведем высоту СН на АД то площадь АВСД=(ВС(ДК)+АД)*СН/2=(ДК+АД)*СН/2=АК*СН/2,
площадь АВСД=(АС*ВД)*sin углаСОД/2 (О-пересечение диагоналей), 30=(5*12)*sin углаСОД/2,
60=60*sin углаСОД, sin углаСОД=1, что соответствует 90, диагонали пересекаются под углом 90.
1) Угол между биссектрисами двух углов треугольника равен 90° плюс половина третьего угла треугольника.
2) Биссектриса треугольника пересекает его описанную окружность в точке, лежащей на серединном перпендикуляре к той стороне, к которой проведена биссектриса.
3) Вписанный в окружность угол в 60° опирается на хорду равную R√3.
Пусть E и F - точки пересечения биссектрис треугольников ABD и АСD соответственно. Тогда из этих треугольников в силу 1) получаем ∠AED=∠AFD=90°/2+90°=135°. Значит AEFD - вписанный 4-угольник и радиус окружности описанной вокруг него равен AD/(2sin∠AED))=2/(2/√2)=√2=EF. Центр О этой окружности лежит на серединном перпендикуляре к AD и OH=1 т.к. HD=1 и OD=√2, где H - середина AD. Кроме того, треугольник OEF - равносторонний. С другой стороны, в силу факта 2) прямые BE и CF также пересекаются в точке О, т.к. прямоугольные треугольники ABD и ACD вписаны в окружность с центром H и радиусом HD=1. Таким образом, угол ∠BOC=∠EOF=60°, а значит по свойству 3) BC=√3.