В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ifraank
ifraank
25.02.2023 23:17 •  Геометрия

дан треугольник ABC . отрезок BE биссектриса угла B стороне AC через точку проведена прямая пересекающая сторону BC в точке Д так что ВД=ЕД докажите что прямые КД и АВ паралельны

Показать ответ
Ответ:
novichek5
novichek5
29.01.2021 20:19

ответ:

объяснение:

1. δавс равнобедренный, значит углы при основании ас равны.∠сва = ∠сав = (180° - 30°)/2 = 75°2. δabd - равнобедренный, значит углы при основании ad равны. ∠bad = ∠bda = 70°.∠сва - внешний, значит равен сумме двух внутренних, не смежных с ним.∠сва = ∠bad + ∠bda = 140°.3. δbmn равнобедренный, значит углы при основании nm равны.∠bmn = ∠bnm = 75°.∠mbn = 180° - (75° + 75°) = 30°∠cba = ∠mbn = 30° как вертикальные.4. δabd равнобедренный, вм медиана, проведенная к основанию ad, а значит и высота.∠вма = 90°.∠сва - внешний для треугольника мва, значит равен сумме двух внутренних, не смежных с ним.∠сва = ∠вам + ∠вма = 45° + 90° = 135°5. δdbc равнобедренный, значит углы при основании сd равны. ∠bdс = ∠bсd = 40°. ∠cdb = 180° - (40° + 40°) = 100°ва - медиана равнобедренного треугольника, значит и биссектриса.∠сва = ∠cbd/2 = 100°/2 = 50°6. ск - медиана равнобедренного треугольника cbd, проведенная к основанию bd, а значит и высота. ∠скв = 90°∠сва - внешний для треугольника скв, значит равен сумме двух внутренних, не смежных с ним.∠сва = ∠вкс + ∠вск = 30° + 90° = 120°7. ва - медиана равнобедренного треугольника асd, проведенная к основанию сd, а значит и высота. ∠сва = 90°8. δеbd - равнобедренный, значит углы при основании еd равны. ∠bеd = ∠bdе = 70°.∠еbd = 180° - (70° + 70°) = 40°∠сва = ∠еbd = 40° как вертикальные.

0,0(0 оценок)
Ответ:
Duglas17
Duglas17
05.06.2023 12:37
Пусть О - точка пересечения медиан треугольника АВС. Треугольники AOP и BOM подобны по двум  углам (два угла равны по условию, еще два угла вертикальные). Тогда:
\frac{AO}{OB} = \frac{PO}{OM}
Так как медианы точкой пересечения делятся в отношении 2:1, то:
\frac{ \frac{2}{3} AM}{ \frac{2}{3} BP} = \frac{\frac{1}{3}BP}{\frac{1}{3}AM}
\\\
\frac{ AM}{ BP} = \frac{BP}{AM}
\\\
AM^2=BP^2
\\\
\Rightarrow AM=BP=1
Если медианы, проведенные к двум сторонам треугольника равны, то и сами стороны также равны. Значит, АС=ВС и треугольник АВС равнобедренный.
Рассмотрим треугольник АМС. По теореме косинусов, учитывая соотношение АС=2СМ, получим:
AM^2=AC^2+CM^2-2\cdot AC\cdot CM\cdot\cos ACB
\\\
1^2=(2CM)^2+CM^2-2\cdot 2CM\cdot CM\cdot0.8
\\\
1=4CM^2+CM^2-3.2CM^2
\\\
1=1.8CM^2
\\\
CM^2= \frac{1}{1.8} = \frac{5}{9} 
\\\
CM= \frac{ \sqrt{5} }{3}
Следовательно стороны в два раза больше: AC=BC= \frac{2 \sqrt{5} }{3}
Тогда площадь треугольника найдем как половину произведения двух его сторон на синус угла между ними:
S= \frac{1}{2} \cdot AC\cdot BC\cdot \sinACB
\\\
S= \frac{1}{2} \cdot AC^2\cdot \sqrt{1-\cos ACB} 
\\\
S= \frac{1}{2} \cdot ( \frac{2 \sqrt{5} }{3})^2\cdot \sqrt{1-0.8}=\frac{1}{2} \cdot \frac{4\cdot5 }{9} \cdot \frac{3}{5} = \frac{2}{3}
ответ: 2/3
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота