Предположим, что каждая из сторон четырёхугольника ABCD меньше √2/2 Тогда квадрат длины каждой стороны меньше 1/2. Среди четырёх углов, образованных пересекающимися прямыми AB и CD, есть два неострых угла. Рассмотрим стороны четырёхугольника, расположенные в этих неострых углах. Сумма квадратов их длин меньше 1. Квадрат длины стороны треугольника, лежащей против неострого угла, не меньше суммы квадратов длин двух других сторон треугольника. Поэтому сумма квадратов длин четырёх отрезков, на которые делятся отрезки AB и CD точкой пересечения, меньше 1. С другой стороны, каждый из этих отрезков делится точкой пересечения на два отрезка, сумма квадратов длин которых не меньше 1/2 поскольку x^2 + (1 - x)^2 = 2(x - 1/2)^2+1/2>=1/2Получено противоречие.
ВС: (х - 2)/(-4) = (у - 4)/(-6). Общий вид: 3х -2у + 2 = 0.
АС: (х + 2)/0 = (у - 1)/(-3). Это линия х = -2.
2) Точка М: х(М) = (-2+2-2)/3 = -2/3,
у(М) = (1+4-2)/3 = 1. Точка М((-2/3); 1).
3) Находим уравнение высоты АД из условия А1А2 + В1В2 = 0.
АД: 2х + 3у + С = 0. Подставим координаты точки А:
2*(-2) + 3*1 + С = 0, отсюда С = 4 - 3 = 1.
АД: 2х + 3у + 1 = 0.
Если задано уравнение прямой ВС: Ax + By + C = 0, то расстояние от точки А(Аx, Аy) до прямой ВС можно найти, используя следующую формулу : d = |A·Аx + B·Аy + C| . А(-2; 1).
√(A² + B²) ВС: 3х -2у + 2 = 0.
Подставим данные: d = |3·(-2) + (-2)·1+ 2| =
√(3² + (-2)²)
= |-6 - 2 + 2|/√13 = 6/√13 ≈ 1,664.
4) Так как одна сторона треугольника вертикальна и равна 3, то высота равна разности координат точек по оси Ох, то есть 2 - (-2) = 4.
Решение
Предположим, что каждая из сторон четырёхугольника ABCD меньше √2/2 Тогда квадрат длины каждой стороны меньше 1/2. Среди четырёх углов, образованных пересекающимися прямыми AB и CD, есть два неострых угла. Рассмотрим стороны четырёхугольника, расположенные в этих неострых углах. Сумма квадратов их длин меньше 1. Квадрат длины стороны треугольника, лежащей против неострого угла, не меньше суммы квадратов длин двух других сторон треугольника. Поэтому сумма квадратов длин четырёх отрезков, на которые делятся отрезки AB и CD точкой пересечения, меньше 1. С другой стороны, каждый из этих отрезков делится точкой пересечения на два отрезка, сумма квадратов длин которых не меньше 1/2 поскольку x^2 + (1 - x)^2 = 2(x - 1/2)^2+1/2>=1/2Получено противоречие.
Даны вершины треугольника А(-2; 1), В(2; 4), С((-2;-2).
1) Векторы АВ = (4; 3), ВС = (-4; -6), АС = (0; -3).
Уравнения (канонические):
АВ: (х + 2)/4 = (у - 1)/3.
ВС: (х - 2)/(-4) = (у - 4)/(-6). Общий вид: 3х -2у + 2 = 0.
АС: (х + 2)/0 = (у - 1)/(-3). Это линия х = -2.
2) Точка М: х(М) = (-2+2-2)/3 = -2/3,
у(М) = (1+4-2)/3 = 1. Точка М((-2/3); 1).
3) Находим уравнение высоты АД из условия А1А2 + В1В2 = 0.
АД: 2х + 3у + С = 0. Подставим координаты точки А:
2*(-2) + 3*1 + С = 0, отсюда С = 4 - 3 = 1.
АД: 2х + 3у + 1 = 0.
Если задано уравнение прямой ВС: Ax + By + C = 0, то расстояние от точки А(Аx, Аy) до прямой ВС можно найти, используя следующую формулу : d = |A·Аx + B·Аy + C| . А(-2; 1).
√(A² + B²) ВС: 3х -2у + 2 = 0.
Подставим данные: d = |3·(-2) + (-2)·1+ 2| =
√(3² + (-2)²)
= |-6 - 2 + 2|/√13 = 6/√13 ≈ 1,664.
4) Так как одна сторона треугольника вертикальна и равна 3, то высота равна разности координат точек по оси Ох, то есть 2 - (-2) = 4.
ответ: S = (1/2)*3*4 = 6.