Дан треугольник ABC - равнобедренный. АВ = ВС = 24 см, ВО - высота треугольника АВС. Периметр треугольника АВС = 82 см. Найдите чему равны АС , АО , ОС
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
1
с=72мм,
а=36мм
по теореме Пифагора
b =√(c^2 -a^2) =√(72^2 -36^2) =36√3
<C =90 - треугольник прямоугольный
sinA = a/c =36/72 =1/2 = sin30
<A=30
<B= 90 - <A =90-30 =60
ОТВЕТ
b =36√3 мм
<C =90
<A=30
<B=60
2
пусть боковая сторона -с
основание b =20 см
<A =<C =30 град
высота (h),опущенная на основание , боковая сторона -с и половина основания b/2
образуют прямоугольный треугольник
c =(b/2)/cos<A = (20/2)/cos30 = 10/√3/2 = 20√3/3 см
h =(b/2)*tg<A = (20/2)*tg30 = 10/√3 = 10√3/3см
ОТВЕТ
боковая сторона 20√3/3 см
высота 10√3/3см
Рассмотрим ∆ АВD и ∆ СВЕ
Оба прямоугольные и имеют общий острые угол АВС.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.