Дан треугольник ABC ступым углом С. На продолжении стороны AC за точку с отмечена точка D. Оказалось, что описанная окружность треугольника ABC проходит через точку пересечения высот треугольника BCD. Чему равен угол ABD, если угол CAB = 50°?
1.Решение: Площадь можно найти по формуле S=a*b*sinα (где a-одна сторона,b-другая сторона, sinα - угол между двумя этими сторонами),получаем, S=10*16*√2/2=80√2 (см²) ответ: 80√2 cм² 2.Решение: Я предположу что высота все таки равна 8. Рисунок прикреплен ниже. 1)Если треугольник равнобедренный и к основанию проведена высота BD,то она делит основание пополам,значит AD=DC=6см 2)Рассмотрим тр ABD (угол D=90°) значит он прямоугольный.По теореме Пифагора AB=√BD²+√AD²=√36+√64=√100=10см .Значит боковая сторона равно 10см ответ 10 см
Рассмотри ABCK - параллелограмм, AH=13 см, HK=7 см, от сюда следует, AK=13+7=20 СМ. Рассмотрим треугольник ABH - прямоугольный, т.к. ВН-высота, а угол Н=90 градусов. Угол А=45 градусов, от сюда следует, угол АВН=45 градусов, т.к. 90-45=45 градусов( по свойству прямоугольного треугольника - сумма двух острых углов прямоугольного треугольника равна 90 градусов). Угол А= углу АВН=45 градусов, от сюда следует, треугольник АВН - равнобедренный, от сюда следует, АН=ВН=13см. S=ah(площадь параллелограмма равна произведению его стороны и высоты, проведенной к этой стороне). S=20*13=260 квадратных сантиметров
Площадь можно найти по формуле S=a*b*sinα (где a-одна сторона,b-другая сторона, sinα - угол между двумя этими сторонами),получаем, S=10*16*√2/2=80√2 (см²)
ответ: 80√2 cм²
2.Решение:
Я предположу что высота все таки равна 8.
Рисунок прикреплен ниже.
1)Если треугольник равнобедренный и к основанию проведена высота BD,то она делит основание пополам,значит AD=DC=6см 2)Рассмотрим тр ABD (угол D=90°) значит он прямоугольный.По теореме Пифагора AB=√BD²+√AD²=√36+√64=√100=10см .Значит боковая сторона равно 10см
ответ 10 см