Угол между прямой и плоскостью - это угол между этой прямой и проекцией этой прямой на данную плоскость.Проведем перпендикуляр АН из точки А на плоскость ВВ1С1С это высота и медиана правильного треугольника АВС. Тогда отрезок С1Н - проекция прямой АС1 на эту плоскость и искомый угол - угол АС1Н. Косинус этого угла равен отношению С1Н/АС1. По Пифагору АС1=√2 (диагональ боковой грани), а С1Н=√5/2(СС1=1,СН=1/2). Тогда Cos(AC1H)=(√5/2)/√2 = √10/4. ответ:В косинус угла между прямой АС1 и плоскостью ВСС1 равен √10/4.
Прямоугольным называется треугольник, у которого один из углов прямой. Это значит, что прямоугольный треугольник имеет две взаимно перпендикулярные стороны, называемые катетами; третья его сторона называется гипотенузой. По свойствам перпендикуляра и наклонных гипотенуза длиннее каждого из катетов (но меньше их суммы). Сумма двух острых углов прямоугольного треугольника равна прямому углу. Две высоты прямоугольного треугольника совпадают с его катетами. Поэтому одна из четырех замечательных точек попадает в вершины прямого угла треугольника. Другая особенность прямоугольного треугольника состоит в
Тогда Cos(AC1H)=(√5/2)/√2 = √10/4.
ответ:В косинус угла между прямой АС1 и плоскостью ВСС1 равен √10/4.
Это значит, что прямоугольный треугольник имеет две взаимно перпендикулярные стороны, называемые катетами; третья его сторона называется гипотенузой. По свойствам перпендикуляра и наклонных гипотенуза длиннее каждого из катетов (но меньше их суммы). Сумма двух острых углов прямоугольного треугольника равна прямому углу. Две высоты прямоугольного треугольника совпадают с его катетами. Поэтому одна из четырех замечательных точек попадает в вершины прямого угла треугольника. Другая особенность прямоугольного треугольника состоит в