Допустим, что вторая сторона четырёхугольника равна Х см. Тогда исходя из условия задачи первая сторона = вторая сторона + 8см = Х+8 см; третья сторона = первая сторона +8 см = Х+8 см (это размер первой стороны) + 8 см=Х+16см четвертая сторона= 3* вторую сторону= 3*Х см. Периметр четырехугольника равен суме его сторон, значит первая сторона+вторая сторона+третья сторона+четвертая сторона=66 см Х+8 + Х+ Х+16+3*Х =66 6Х+24=66 6х=42 х=42/6 х=7 см - это размер второй стороны.
первая сторона = Х+8 =7+8=15 см; третья сторона = Х+16=7+16=23 см четвертая сторона= 3*Х =3*7=21 см.
ответ: стороны четырёхугольника равны 15 см, 7 см, 23 см, 21 см
Площадь треугольника OCD в два раза больше площади тр-ка OCB, а высоты, опущенные из вершины C на OD и BO совпадают. Поскольку площадь треугольника может быть посчитана по формуле "половина произведения основания на высоту", отсюда следует, что OD в два раза больше, чем BO. А поскольку у треугольников DAO и BAO высоты, опущенные из вершины A, совпадают, площадь AOD в два раза больше, чем площадь AOB, то есть площадь AOD равна 12.
Можно рассуждать по-другому. Есть теорема, по которой произведение площадей треугольников AOB и COD равно произведению площадей треугольников AOD и BOC, откуда неизвестная площадь тр-ка AOD = 6·8/4=12. Доказательство этой теоремы очень простое, основывается на вычислении площади треугольника по формуле "половина произведения сторон и на синус угла между ними", а также на формуле приведения sin (180°-α)=sin α.
Тогда исходя из условия задачи
первая сторона = вторая сторона + 8см = Х+8 см;
третья сторона = первая сторона +8 см = Х+8 см (это размер первой стороны) + 8 см=Х+16см
четвертая сторона= 3* вторую сторону= 3*Х см.
Периметр четырехугольника равен суме его сторон, значит
первая сторона+вторая сторона+третья сторона+четвертая сторона=66 см
Х+8 + Х+ Х+16+3*Х =66
6Х+24=66
6х=42
х=42/6
х=7 см - это размер второй стороны.
первая сторона = Х+8 =7+8=15 см;
третья сторона = Х+16=7+16=23 см
четвертая сторона= 3*Х =3*7=21 см.
ответ: стороны четырёхугольника равны 15 см, 7 см, 23 см, 21 см
Можно рассуждать по-другому. Есть теорема, по которой произведение площадей треугольников AOB и COD равно произведению площадей треугольников AOD и BOC, откуда неизвестная площадь тр-ка AOD = 6·8/4=12. Доказательство этой теоремы очень простое, основывается на вычислении площади треугольника по формуле "половина произведения сторон и на синус угла между ними", а также на формуле приведения sin (180°-α)=sin α.