Для этого надо составить уравнения сторон в виде у = кх + в. У параллельных прямых коэффициенты "к" равны. Сторона АВ: Уравнение прямой: Будем искать уравнение в виде y = k · x + b . В этом уравнении: k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX); b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY. k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4; b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 . Искомое уравнение: y = 4 · x - 14 .
Сторона ВС: k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5; b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 . Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД: k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4; b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 . Искомое уравнение: y = 4 · x + 13 .
Сторона АД: k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4; b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 . Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.
Сначала ужно написать уравнение прямой, проходящей через точки А и В. Найти середину отрезка АВ. Через эту точку провести прямую, перепендикулярную АВ. Все точки этой прямой будут находится на равном расстоянии от точек А и В. 1) Напишем уравнение прямой, проходящей чнрез точки А и В; у=к*х+в; 2=к*4+в; в=2-4к (1); 7=к*6+в; в=7-6к (2); 2-4к=7-6к; 2к=5; к=2,5; в=7-6*2,5=-8; у=2,5х-8; угловой коэффициент равен к=2,5; 2) координаты точки середины отрезка АВ равны ((4+6)/2; (2+7)/2)=(5;4,5); 3) угловые коэффициенты перпендикулярных прямых обратны по величине и противоположны по знаку. Угловой коэффициент искомой прямой равен к1=-1/к=-1/2,5=-0,4; Уравнение прямой проходящей через точку (5;4,5) перпендикулярно к прямой у=2,5х-8: 4,5=5*(-0,4)+в; в=4,5+2=6,5; у=-0,4х+6,5; 0,4х+у-6,5=0;
У параллельных прямых коэффициенты "к" равны.
Сторона АВ:
Уравнение прямой:
Будем искать уравнение в виде y = k · x + b .
В этом уравнении:
k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX);
b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY.
k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4;
b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 .
Искомое уравнение: y = 4 · x - 14 .
Сторона ВС:
k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5;
b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 .
Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД:
k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4;
b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 .
Искомое уравнение: y = 4 · x + 13 .
Сторона АД:
k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4;
b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 .
Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.
Сначала ужно написать уравнение прямой, проходящей через точки А и В. Найти середину отрезка АВ. Через эту точку провести прямую, перепендикулярную АВ. Все точки этой прямой будут находится на равном расстоянии от точек А и В. 1) Напишем уравнение прямой, проходящей чнрез точки А и В; у=к*х+в; 2=к*4+в; в=2-4к (1); 7=к*6+в; в=7-6к (2); 2-4к=7-6к; 2к=5; к=2,5; в=7-6*2,5=-8; у=2,5х-8; угловой коэффициент равен к=2,5; 2) координаты точки середины отрезка АВ равны ((4+6)/2; (2+7)/2)=(5;4,5); 3) угловые коэффициенты перпендикулярных прямых обратны по величине и противоположны по знаку. Угловой коэффициент искомой прямой равен к1=-1/к=-1/2,5=-0,4; Уравнение прямой проходящей через точку (5;4,5) перпендикулярно к прямой у=2,5х-8: 4,5=5*(-0,4)+в; в=4,5+2=6,5; у=-0,4х+6,5; 0,4х+у-6,5=0;
Объяснение:
мне дали 5®