Построение треугольника: 1) Проведём прямую a. 2) Построим перпендикулярную к ней прямую b: -Проведём окружность произвольного радиуса с центром в произвольной точке (в нашем случае ,в точке О) так,что она пересечёт прямую a в точках M и N; -Проведём две окружности радиуса MN с центрами в точках M и N так,что они пересекутся в двух точках F и S; -Проведём прямую b через точки F и S; точки F,O,S лежат на одной прямой b; -a⊥b. 3)Проведём окружность произвольного радиуса с центром в точке О так,что она пересечёт прямые a и b в двух точках каждую;нам нужны лишь две : A и B (A∈a,B∈b) 4)Соединим точки A и B. 5) AOB -- прямоугольный равнобедренный треугольник.
Прямой угол можно построить и с циркуля!
Поворот вокруг вершины B на 90 градусов: 1) Транспортиром откладываваем два прямых угла: один от точки B для от прямой a,другой от этой же точки,но для прямой AB -- прямые a и c образуют угол в 90°,AB и d так же. 2) Раствором циркуля берём расстояние BO и переносим его на прямую c,откладывая от точки B;отмечаем точку O'. Затем берём расстояние AB и откладываем на прямой d от точки B его же,отметив точку A'. AB=A'B,OB=O'B. Соединим точки: B с O',O' с A',A' с B 3) A'O'B -- образ треугольника AOB при повороте на 90 градусов по часовой стрелке вокруг точки B.
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
1) Проведём прямую a.
2) Построим перпендикулярную к ней прямую b:
-Проведём окружность произвольного радиуса с центром в произвольной точке (в нашем случае ,в точке О) так,что она пересечёт прямую a в точках M и N;
-Проведём две окружности радиуса MN с центрами в точках M и N так,что они пересекутся в двух точках F и S;
-Проведём прямую b через точки F и S; точки F,O,S лежат на одной прямой b;
-a⊥b.
3)Проведём окружность произвольного радиуса с центром в точке О так,что она пересечёт прямые a и b в двух точках каждую;нам нужны лишь две : A и B (A∈a,B∈b)
4)Соединим точки A и B.
5) AOB -- прямоугольный равнобедренный треугольник.
Прямой угол можно построить и с циркуля!
Поворот вокруг вершины B на 90 градусов:
1) Транспортиром откладываваем два прямых угла: один от точки B для от прямой a,другой от этой же точки,но для прямой AB --
прямые a и c образуют угол в 90°,AB и d так же.
2) Раствором циркуля берём расстояние BO и переносим его на прямую c,откладывая от точки B;отмечаем точку O'. Затем берём расстояние AB и откладываем на прямой d от точки B его же,отметив точку A'. AB=A'B,OB=O'B. Соединим точки: B с O',O' с A',A' с B
3) A'O'B -- образ треугольника AOB при повороте на 90 градусов по часовой стрелке вокруг точки B.
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.