РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.
4040 + 2039190 = 2043230
Объяснение:
Две точки разбивают окружность на две дуги.
Рассмотрим дуги с синей точкой в качестве одного из концов.
Синяя точка образует с 2020 красной точкой 4040 дуги.
Рассмотрим теперь только красные точки.
Найдем количество различных пар из 2020 точек.
Количество сочетаний из n по k:
С = n!/k!(n-k)!
Количество сочетаний из 2020 по 2:
С = 2020!/2018!*2 =2020*2019/2 =2039190
Красные точки образуют С пар, каждая пара образует две дуги, одна из этих дуг содержит синюю точку.
Итого C дуг с концами в красных точках содержат синюю точку.
Для подсчета пар можно воспользоваться суммой натурального ряда:
(n+1)n/2
Количество пар из 2020 точек равно сумме 2019 последовательных натуральных чисел :
С =2020*2019/2
РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.