Дан треугольник АВС. На продолжении его медианы СД отложен отрезок DЕ. DE=СD. Доказать, что треугольник ВАЕ и АВС равны. № 2. В равнобедренном треугольнике АВС и А1В1С1 с основаниями АС и А1С1 проведены медианы ВD и В1D1. ВD=В1D1, угол В = углу В1. Доказать, что треугольники АВС и А1В1С1 равны.
Объяснение:
1кл=1см
1) треугольник ∆АВС
Площадь треугольника равна половине произведения основания на высоту опущенную на это основание.
ВК- высота
S1=АС*ВК/2=6*5/2=15см² площадь треугольника ∆АВС
ответ: площадь треугольника ∆АВС равна 15см²
2) параллелограм КРМО.
РН-высота
S2=PH*OM=5*5=25 см² площадь параллелограма.
ответ: 25см²
3) ромб АВСD
AС и ВD диагонали ромба
Площадь ромба равна половине произведения двух диагоналей
S3=АС*BD/2=4*6/2=24/2=12см² площадь ромба.
ответ: 12см²
4) ∆LMN
∆LMN- прямоугольный.
Площадь прямоугольного треугольника равна половине произведения двух катетов.
S4=LM*MN/2=3*5/2=7,5см² площадь треугольника ∆LMN
ответ: 7,5см²
5) трапеция ABCD.
Площадь трапеции равна произведению средней линии трапеции на высоту.
ВК- высота трапеции.
S4=BK*(BC+AD)/2
S4=3*(4+8)/2=3*12/2=36/2=18см² площадь трапеции
ответ:18см²
1. Нехай ∠1 = х (°), тоді ∠2 = x+20 (°). Сумма внутрішніх односторонніх кутів при паралельних прямих і січній дорівнює 180° ⇒ ∠1+∠2 = 180°. Складемо і вирішимо рівняння:
x+20+x = 180
2x = 160
x = 80
Отже, градусна міра ∠1 = х = 80°, тоді ∠2 = х+20 = 80+20 = 100°.
Відповідь: 80°; 100°.
2. Нехай ∠1 = х (°), тоді ∠2 = 4x (°). Сумма внутрішніх односторонніх кутів при паралельних прямих і січній дорівнює 180° ⇒ ∠1+∠2 = 180°. Складемо і вирішимо рівняння:
x+4x = 180
5x = 180
x = 36
Отже, градусна міра ∠1 = х = 36°, тоді ∠2 = 4x = 4·36= 144°.
Відповідь: 36°; 144°.