Дано: МАВС - пирамида, АВ=ВС=8, <BAC=<BCA=30°, <MCO=<MAO=<MBO=60° найти :V
основание - равнобедренный ΔАВС, углы при основании 30°, => угол при вершине равнобедренного треугольника 120° все боковые ребра образуют с плоскостью основания пирамиды углы 60°, => высота пирамиды проектируется в центр описанной около треугольника окружности. (т.к. угол при вершине тупой, то центр окружности вне треугольника) радиус описанной около треугольника окружности вычисляется по формуле:
прямоугольный треугольник: катет ОС=R=8 - радиус окружности катет МО=Н - высота пирамиды, найти угол между боковым ребром пирамиды и плоскостью основания пирамиды 60°
ЕАВС - пирамида, ∠С=90°, ∠В=15°. Так как боковые рёбра наклонены к плоскости основания пирамиды под одним градусом, то основание высоты пирамиды лежит в точке описанной около основания окружности. Так как треугольник АВС прямоугольный, то центр описанной окружности лежит посередине гипотенузы. АМ=ВМ=СМ. Пусть АМ=х, тогда АВ=2х. В тр-ке ЕСМ ЕМ=СМ·tg60=х√3.
Центр шара, описанного около пирамиды, лежит на прямой ЕМ так как только точки этой прямой равноудалены от вершин тр-ка АВС. Поскольку СМ<ЕМ, то центр описанной окружности лежит между точками Е и М. Обозначим его точкой О. АО=ВО=СО=ЕО=6 см. Пусть МО=у. В тр-ке СМО СО²=СМ²+МО²=х²+у²=6². ЕО=ЕМ-МО=х√3-у=6 ⇒ у=х√3-6, подставим это в первое уравнение: х²+(х√3-6)²=36, х²+3х²-12х√3+36=36, 4х²-12х√3=0, 4х(х-3√3)=0, х₁=0, х-3√3=0, х₂=3√3. В тр-ке АВС АМ=ВМ=СМ=3√3 см. ВС=АВ·cos15. Площадь тр-ка АВС: S=(1/2)АВ·ВС·sin15=(1/2)AB²·sin15·cos15=(AB²·sin30)/4. S=(6√3)²/8=27/2 см². Высота пирамиды: Н=ЕМ=х√3=3√3·√3=9 см. Объём пирамиды: V=SH/3=27·9/6=40.5 см³ - это ответ.
найти :V
основание - равнобедренный ΔАВС, углы при основании 30°, => угол при вершине равнобедренного треугольника 120°
все боковые ребра образуют с плоскостью основания пирамиды углы 60°, => высота пирамиды проектируется в центр описанной около треугольника окружности. (т.к. угол при вершине тупой, то центр окружности вне треугольника)
радиус описанной около треугольника окружности вычисляется по формуле:
прямоугольный треугольник:
катет ОС=R=8 - радиус окружности
катет МО=Н - высота пирамиды, найти
угол между боковым ребром пирамиды и плоскостью основания пирамиды 60°
MO=8√3. Н=8√3
Так как боковые рёбра наклонены к плоскости основания пирамиды под одним градусом, то основание высоты пирамиды лежит в точке описанной около основания окружности.
Так как треугольник АВС прямоугольный, то центр описанной окружности лежит посередине гипотенузы. АМ=ВМ=СМ.
Пусть АМ=х, тогда АВ=2х.
В тр-ке ЕСМ ЕМ=СМ·tg60=х√3.
Центр шара, описанного около пирамиды, лежит на прямой ЕМ так как только точки этой прямой равноудалены от вершин тр-ка АВС. Поскольку СМ<ЕМ, то центр описанной окружности лежит между точками Е и М. Обозначим его точкой О. АО=ВО=СО=ЕО=6 см.
Пусть МО=у.
В тр-ке СМО СО²=СМ²+МО²=х²+у²=6².
ЕО=ЕМ-МО=х√3-у=6 ⇒ у=х√3-6, подставим это в первое уравнение:
х²+(х√3-6)²=36,
х²+3х²-12х√3+36=36,
4х²-12х√3=0,
4х(х-3√3)=0, х₁=0,
х-3√3=0,
х₂=3√3.
В тр-ке АВС АМ=ВМ=СМ=3√3 см.
ВС=АВ·cos15.
Площадь тр-ка АВС: S=(1/2)АВ·ВС·sin15=(1/2)AB²·sin15·cos15=(AB²·sin30)/4.
S=(6√3)²/8=27/2 см².
Высота пирамиды: Н=ЕМ=х√3=3√3·√3=9 см.
Объём пирамиды:
V=SH/3=27·9/6=40.5 см³ - это ответ.