Дан треугольник АВС. Плоскость, параллельная прямой АВ, пересекает сторону АС этого треугольника в точке А1, а сторону ВС в точке В1. Найдите длину отрезка А1В1, если В1С=37 м, АВ:ВС=5:7
Плоскость α параллельна прямой АВ, лежащей в плоскости треугольника АВС, и пересекает эту плоскость по прямой А₁В₁, значит линия пересечения параллельна прямой АВ.
Т.е. АВ║А₁В₁.
∠СА₁В₁ = ∠САВ как соответственные при пересечении параллельных прямых АВ и А₁В₁ секущей АС,
∠С - общий для ΔАВС и А₁В₁С, значит треугольники подобны по двум углам.
Плоскость α параллельна прямой АВ, лежащей в плоскости треугольника АВС, и пересекает эту плоскость по прямой А₁В₁, значит линия пересечения параллельна прямой АВ.
Т.е. АВ║А₁В₁.
∠СА₁В₁ = ∠САВ как соответственные при пересечении параллельных прямых АВ и А₁В₁ секущей АС,
∠С - общий для ΔАВС и А₁В₁С, значит треугольники подобны по двум углам.
А₁В₁ : АВ = СА₁ : СА
АА₁ : АС = 2 : 3, ⇒ СА₁ : АС = 1 : 3
А₁В₁ : 15 = 1 : 3
А₁В₁ = 15/3 = 5 см
Объяснение: