Если периметр квадрата равен 24, легко найти длину одной стороны по формуле Р(кв.) = 4а, то есть 24 = 4а, получаем, что а = 6. Тогда можем воспользоваться теоремой Пифагора (т.к. у квадрата все углы прямые) и рассчитать длину диагонали как гипотенузу в прямоугольном ∆. Тогда получим, что х² = 6² + 6² = 2*36 = 72, а х = √72, то есть х = √(3² * 2² * 2) = 6√2. Мы берем только положительное значение, потому что арифметический квадратный корень ≥ 0, а длина строго больше 0. ответ: длина диагонали равна 6√2.
Т.к. треугольник равнобедренный, то его углы при основании равны, к тому и две стороны. Нам дан внешний угол, который равен менее 90°, значит, сам угол треугольника тупой. Как мы знаем: Против большего угла лежит большая сторона. Получаем, что именно данное основание больше одной из сторон на 4,4. Периметр треугольника равен сумме всех сторон: P = a + b + c. Допустим, а и b являются равными сторонами; Тогда b = a, тогда с = а + 4,5; Запишем: P = 2 a + ( a + 4,4); Подставим: 12 = 3 a а = 4 см = b. Следовательно c = 8,4 cм. ответ: 4 см; 4 см; 8,4 см.
Периметр треугольника равен сумме всех сторон: P = a + b + c. Допустим, а и b являются равными сторонами; Тогда b = a, тогда с = а + 4,5; Запишем:
P = 2 a + ( a + 4,4); Подставим:
12 = 3 a
а = 4 см = b.
Следовательно c = 8,4 cм.
ответ: 4 см; 4 см; 8,4 см.