Дан треугольник АВС. ВМ и АD – биссектрисы треугольника, которые пересекаются в точке О. Найдите все углы треугольника АОВ, если известно, что ∟ВАС = 60°, ∟АВС = 80°. Сумма всех углов треугольника АВО равна 180°.
Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О. Проведем высоту через точку пересечения диагоналей. Высота делит основания равнобедренной трапеции пополам. Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x). BC/2=x·tg((180°-α)/2) AD/2=(h-x)· tg((180°-α)/2)
ВСК= 150°, значит ВСD= 30, так как образуется смежный угол если их сложить то получится 180°.
Значит исходя из полученного ответа DAB=30° обьясняется это тем что треугольник равнобедренный.
Если BD медиана, значит она делит противостоящую сторону пополам. Из этого исходит, что, медиана в нашем случае делит треугольник пополам образуя угол в 90°=BDA.
Осталось найти угол.
Так как треугольник имеет сумму всех углов равную 180° мы сложим угол BDA и DAB, получим угол ABD
Проведем высоту через точку пересечения диагоналей.
Высота делит основания равнобедренной трапеции пополам.
Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x).
BC/2=x·tg((180°-α)/2)
AD/2=(h-x)· tg((180°-α)/2)
Средняя линия трапеции равна полусумме оснований.
MN=(BC+AD)/2=(BC/2)+(AD/2)=x·tg((180°-α)/2) +(h-x)· tg((180°-α)/2) =
=tg((180°-α)/2)(x+h-x)=h·tg((180°-α)/2)=h·tg(90°-(α/2))
BDA = 90°
ABC= 60°
Объяснение:
ВСК= 150°, значит ВСD= 30, так как образуется смежный угол если их сложить то получится 180°.
Значит исходя из полученного ответа DAB=30° обьясняется это тем что треугольник равнобедренный.
Если BD медиана, значит она делит противостоящую сторону пополам. Из этого исходит, что, медиана в нашем случае делит треугольник пополам образуя угол в 90°=BDA.
Осталось найти угол.
Так как треугольник имеет сумму всех углов равную 180° мы сложим угол BDA и DAB, получим угол ABD
90°+30°=120°
180°-120°=60° угол ABC