Площадь прямоугольного треугольника вычисляется по формуле S=1/2*a*b, где a,b - катеты треугольника. В нашем случае S=1/2*6*8=24. Гипотенузу прямоугольного треугольника найдём по теореме Пифагора - она равна . Площадь треугольника также вычисляется по формуле S=1/2*a*h, где a - сторона треугольника, h - проведённая к ней высота. Зная площадь нашего треугольника и величину гипотенузы, найдём из этой формулы величину проведённой к гипотенузе высоты: S=1/2*a*h ⇒ h=2S/a ⇒ h=2*24/10=4.8. Таким образом, высота, проведённая к гипотенузе, равна 4.8 см.
Гипотенузу прямоугольного треугольника найдём по теореме Пифагора - она равна .
Площадь треугольника также вычисляется по формуле S=1/2*a*h, где a - сторона треугольника, h - проведённая к ней высота. Зная площадь нашего треугольника и величину гипотенузы, найдём из этой формулы величину проведённой к гипотенузе высоты:
S=1/2*a*h ⇒ h=2S/a ⇒ h=2*24/10=4.8.
Таким образом, высота, проведённая к гипотенузе, равна 4.8 см.
Площадь боковой поверхности цилиндра:
Sбок = 2πRH
По условию H = R - 2,
2πR(R - 2) = 160π
R(R - 2) = 80
R² - 2R - 80 = 0 по тоереме Виета:
R = 10 или R = - 8 (не подходит по смыслу задачи)
Н = R - 2 = 8 см
а) Осевое сечение - прямоугольник, стороны которого равны диаметру основания и высоте цилиндра:
Sос. сеч. = 2R · H = 2 · 10 · 8 = 160 см²
б) Сечение цилинра, параллельное оси, имеет форму прямоугольника, одна сторона которого равна высоте. Найдем другую сторону (АВ).
ΔАОВ равнобедренный (АО = ВО как радиусы). Проведем ОС⊥АВ, ОС = 6 см по условию. ОС является так же медианой, ⇒ АС = ВС.
ΔАОС: ∠АСО = 90°, по теореме Пифагора:
АС = √(АО² - ОС²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
АВ = 2АС = 16 см
Sсеч = AB · H = 16 · 8 = 128 см²