Дан треугольник BCD, точка A и плоскость, она может быть задана кругами, треугольниками и тд.:
1. построить следы плоскости треугольника BCD
2.определить углы наклона данной плоскости к плоскости проекции
3. найти расстояние от точки до плоскости
4. найти линии пересечения двух плоскостей
5. найти натуральную величину треугольника BCD
Рассмотрим образованную пирамиду АВСК. КВ перпендикулярно АВС, значит нам необходимо найти длину высоты, опущенной в грани АСК из вершины К на АС. По теореме о трех перпендикулярах ее проекция на плоскость АВС будет перпендикулярна АС. Обозначим точку пересечения высоты с АС через Н. Тогда нужно найти КН.
Рассмотрим основание пирамиды - треугольник АВС. Он равнобедренный АС=ВС=10, с углом у основания А=30 градусов. Опустим высоту из вершины треугольника С на АВ - СМ. Высота, опущенная из точки С, будет и биссектрисой, и медианой треугольника. То есть АМ=МВ. Треугольник АСМ - прямоугольный, с одним из осмтрых углов = 30 градусов, значит катет, лежащий против этого угла, равен половине гипотенузы: АМ=1/2*АС, АМ=1/2*10=5 (см). По теореме Пифагора найдем второй катет СМ:
CM=sqrt(AC2-AM2)
CM=sqrt(100-25)=sqrt75=5sqrt3
BH- проекция КН на плоскость основания АВС, и, как было уже отмечено, ВН перпендикулярна АС. Рассм отрим треугольники АНВ и АМС- они подобны:
АН/АМ=НВ/МС=АВ/АС
НВ/МС=АВ/АС
НВ=МС*АВ/АС
НВ=5*(2*5sqrt3)/10=5sqrt3
Треугольник КНВ - прямоугольный (КВ перпендикулярно плоскости АВС). По теореме Пифагора найдем КН:
KH2=KB2+HB2
KH=sqrt(25+75)=sqrt100=10 (см)
Обозначим точку пересечения окружности со стороной АВ буквой К, а со стороной АД - буквое Е.
Соединим эти точки.
Вписанный угол КАЕ - прямой, ⇒ КЕ- диаметр окружности.
Проведем через N и центр окружности О прямую HN. Она параллельна АD, т.к. ОN - радиус, проведенный в точку касания и перпендикулярен стороне СD. Соединим О и А радиусом ОА.
АН=ND =7 как стороны прямоугольника АНND.
ОН=ВМ=24, т.к. ОМ⊥ ВС как радиус, проведенный в точку касания к ВС.
Из прямоугольного треугольника АОН найдем гипотенузу АО, которая является радиусом окружности:
АО²=ОН²+АН²= 576+49=625
АО=√625=25
ОN=r=АO=25
MC=ON=25
ВС=ВМ+МС=24+25=49
СD=CN+ND=25+7=32
S (ABCD)=BC*CD=49*32=1568 ( ед. площади)
------
[email protected]