Дан треугольник MKL. Серединный перпендикуляр стороны KL пересекает сторону треугольника М в точке N. Если NK = 17 см, ML = 26 см, то чему равна длина отрезка MN?
Найти стороны равнобедренного треугольника АВС, то есть АВ, ВС, АС — ?
Рассмотрим равнобедренный треугольник АВС. У него боковые стороны равны между собой, тогда АВ = ВС.
Пусть длина основания АС = х сантиметрам. тогда длины его боковых сторон АВ = ВС = х + 5 сантиметров. Нам известно, что периметр треугольника АВС равен 37 сантиметров. Составляем уравнение:
abcd - трапеция; ad - нижнее основание; bc - верхнее основание; o - точка пересечения диагоналей. ef проходит через точку o и параллельно основаниям. mn проходит через точку o и перпендикулярно основаниям - высота трапеции. e∈ab; f∈cd; m∈bc; n∈ad
тр-к boc подобен тр-ку aod. отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. значит, ad: bc=3^: 1; mo: on=1: 3; mo: mn=1: 4;
пусть bc=x⇒ad=3x; mo=y; ⇒on=3y; mn=4y
площадь трапеции abcd равна: s=1/2(ad+bc)*mo=1/2(x+3x)*4y=8xy
выразим через s площади befc и aefd.
площадь aefd равна сумме площадей aofd и aeo.
рассмотрим тр-ки acd и ocf. они подобны. их высоты относятся как 4: 1, а площади как 16: 1. площадь acd равна 1/2*3x*4y=6xy. площадь ocf равна 1/16*6xy=3/8*xy. площадь aofd равна разности площадей acd и ocf:
6xy-3/8*xy=45/8*xy
рассмотрим тр-ки abc и aeo. они подобны. их высоты относятся как 4: 3, а площади как 16: 9. площадь abc равна 1/2*x*4y=2xy. площадь aeo равна 9/16*2xy=9/8*xy. площадь aefd равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy
Дано:
равнобедренный треугольник АВС,
АС — основание,
АВ = АС + 5 сантиметров,
Р АВС = 37 сантиметров.
Найти стороны равнобедренного треугольника АВС, то есть АВ, ВС, АС — ?
Рассмотрим равнобедренный треугольник АВС. У него боковые стороны равны между собой, тогда АВ = ВС.
Пусть длина основания АС = х сантиметрам. тогда длины его боковых сторон АВ = ВС = х + 5 сантиметров. Нам известно, что периметр треугольника АВС равен 37 сантиметров. Составляем уравнение:
х + х + 5 + х + 5 = 37;
3 * х + 10 = 37;
3 * х = 37 - 10;
3 * х = 27;
х = 27 : 3;
х = 9 сантиметров — длина основания АС;
9 + 5 = 14 сантиметров — длины сторон АВ и ВС.
ответ: 9 сантиметров; 14 сантиметров; 14 сантиметров.
abcd - трапеция; ad - нижнее основание; bc - верхнее основание; o - точка пересечения диагоналей. ef проходит через точку o и параллельно основаниям. mn проходит через точку o и перпендикулярно основаниям - высота трапеции. e∈ab; f∈cd; m∈bc; n∈ad
тр-к boc подобен тр-ку aod. отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. значит, ad: bc=3^: 1; mo: on=1: 3; mo: mn=1: 4;
пусть bc=x⇒ad=3x; mo=y; ⇒on=3y; mn=4y
площадь трапеции abcd равна: s=1/2(ad+bc)*mo=1/2(x+3x)*4y=8xy
выразим через s площади befc и aefd.
площадь aefd равна сумме площадей aofd и aeo.
рассмотрим тр-ки acd и ocf. они подобны. их высоты относятся как 4: 1, а площади как 16: 1. площадь acd равна 1/2*3x*4y=6xy. площадь ocf равна 1/16*6xy=3/8*xy. площадь aofd равна разности площадей acd и ocf:
6xy-3/8*xy=45/8*xy
рассмотрим тр-ки abc и aeo. они подобны. их высоты относятся как 4: 3, а площади как 16: 9. площадь abc равна 1/2*x*4y=2xy. площадь aeo равна 9/16*2xy=9/8*xy. площадь aefd равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy
площадь befc равна разности площадей abcd и aefd:
8xy-27/4*xy=5/4*xy
s(befc): s(aefd)=5/4*xy: 27/4*xy=5: 27