Находим координаты точки А как точки пересечения двух заданных сторон треугольника.
2х+у-1 = 0
4х-у-11=0, сложим уравнения: 6х - 12 = 0, отсюда х = 12/6 = 2,
значение у = 1-2*2 = -3.
Точка А(2; -3), точка Р(1; 2).
Вектор АР = (1-2; 2-(-3)) = (-1; 5)
Перпендикулярный вектор имеет такие координаты, скалярное произведение которых на координаты вектора АР равны 0.
Это будет вектор ВС(5; 1).
Теперь можно составить уравнение ВС по направляющему вектору ВС и точке Р.
(х - 1)/5 = (у - 2)/1.
х - 1 = 5у - 10.
ответ: уравнение х - 5у + 9 = 0.
1) Сначала докажем, что четырехугольник ABCD параллелограмм:
О1:X=0+2:2=1;y=2+0:2=1;z=0+2:2=1-Середина АС
О1(1;1;1)
О2:x=1+1:2=1;y=0+2:2=1;z=0+2:2=1-Середина BD
О2(1;1;1)
AB^2=(0-1)^2+(2-0)^2+(0-0)^2=5
AD^2=(1-0)^2+(2-2)^2+(2-0)^2=5
АВ = AD, так что
ABCD — параллелограмм с равными сторонами, т.е. ромб.
4)т.А(1;1;1), т.B(x;y). Вектор AB(x-1;y-1;0-1).Вектор a(1;2;3).Составим уравнения, используя условие коллинеарности:(x-1) / 1 = (y-1) / 2 = (0-1) / 3.Решим уравнения:(x-1) / 1 = (0-1) / 3; x-1 = -1/3; x = (3/3)-(1/3) = 2/3.(y-1) / 2 = (0-1) / 3; y-1 = (-1/3)*2; y = (3/3) - (2/3) = 1/3.ответ: Вектор AB(-1/3;-2/3;-1).
Находим координаты точки А как точки пересечения двух заданных сторон треугольника.
2х+у-1 = 0
4х-у-11=0, сложим уравнения: 6х - 12 = 0, отсюда х = 12/6 = 2,
значение у = 1-2*2 = -3.
Точка А(2; -3), точка Р(1; 2).
Вектор АР = (1-2; 2-(-3)) = (-1; 5)
Перпендикулярный вектор имеет такие координаты, скалярное произведение которых на координаты вектора АР равны 0.
Это будет вектор ВС(5; 1).
Теперь можно составить уравнение ВС по направляющему вектору ВС и точке Р.
(х - 1)/5 = (у - 2)/1.
х - 1 = 5у - 10.
ответ: уравнение х - 5у + 9 = 0.
1) Сначала докажем, что четырехугольник ABCD параллелограмм:
О1:X=0+2:2=1;y=2+0:2=1;z=0+2:2=1-Середина АС
О1(1;1;1)
О2:x=1+1:2=1;y=0+2:2=1;z=0+2:2=1-Середина BD
О2(1;1;1)
AB^2=(0-1)^2+(2-0)^2+(0-0)^2=5
AD^2=(1-0)^2+(2-2)^2+(2-0)^2=5
АВ = AD, так что
ABCD — параллелограмм с равными сторонами, т.е. ромб.
4)т.А(1;1;1), т.B(x;y). Вектор AB(x-1;y-1;0-1).Вектор a(1;2;3).Составим уравнения, используя условие коллинеарности:(x-1) / 1 = (y-1) / 2 = (0-1) / 3.Решим уравнения:(x-1) / 1 = (0-1) / 3; x-1 = -1/3; x = (3/3)-(1/3) = 2/3.(y-1) / 2 = (0-1) / 3; y-1 = (-1/3)*2; y = (3/3) - (2/3) = 1/3.ответ: Вектор AB(-1/3;-2/3;-1).