Дан тупоугольный треугольник АВС. Точка пересечения серединных перпендикуляров сторон тупого угла находится на расстоянии 18,2 см от вершины угла В. Определи расстояние точки D от вершин А и С. DA = см. DC СМ.
Объяснение:Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.
а) найдите площадь полной поверхности этой призмы;
б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;
в) вычислите площадь этого сечения;
г) найдите угол между плоскостью сечения и плоскостью нижнего основания;
д) постройте линию пересечения секущей плоскости верхнего основания.
рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.
И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:
площадь основания
Теперь найдем площади боковых граней, а затем и площадь полной поверхности
На стороне ВС остроугольного треугольника АВС как на диаметре построена полуокружность, пересекающая высоту АD в точке М, АD=75, MD=60, H-точка пересечения высот треугольника ABC. Найдите HD.
РЕШЕНИЕ:
• АМ = АD - MD = 75 - 60 = 15 AK = AM + MD + DK = 15 + 60 + 60 = 135 • По свойству секущих: АЕ • АС = АМ • АК = 15 • 135 • тр. АНЕ подобен тр. АСD по двум углам ( угол А - общий , угол АЕН = угол ADC = 90° ) Составим отношения сходственных сторон: АЕ/АD = AH/AC = HE/CD , отсюда AE/AD = AH/AC AE • AC = AD • AH =>
Объяснение:Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.
а) найдите площадь полной поверхности этой призмы;
б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;
в) вычислите площадь этого сечения;
г) найдите угол между плоскостью сечения и плоскостью нижнего основания;
д) постройте линию пересечения секущей плоскости верхнего основания.
рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.
И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:
площадь основания
Теперь найдем площади боковых граней, а затем и площадь полной поверхности
нашли полную поверхность
РЕШЕНИЕ:
• АМ = АD - MD = 75 - 60 = 15
AK = AM + MD + DK = 15 + 60 + 60 = 135
• По свойству секущих:
АЕ • АС = АМ • АК = 15 • 135
• тр. АНЕ подобен тр. АСD по двум углам ( угол А - общий , угол АЕН = угол ADC = 90° )
Составим отношения сходственных сторон:
АЕ/АD = AH/AC = HE/CD , отсюда
AE/AD = AH/AC
AE • AC = AD • AH =>
AH = AE • AC / AD = 15 • 135 / 75 = 27
HD = AD - AH = 75 - 27 = 48
ОТВЕТ: 45.