Дан тупой угол ABC. Докажи методом от противного, что прямая a, параллельная одной стороне угла, не параллельна другой его стороне. Доказательство:
можно провести на плоскости единственную прямую,
Доказано: прямая a не может быть параллельной двум сторонам тупого угла.
Пусть a || AB и a || BC.
через точку, не лежащую на данной прямой,
Значит, прямые AB и BC должны быть дополнительными полупрямыми.
Тогда точка B – общая точка прямой AB и прямой BC.
По аксиоме параллельных прямых
Получено противоречие: стороны тупого угла не могут быть дополнительными полупрямыми
параллельную данной.
Обозначают так: точка отсчета, начало луча, к примеру А, вторая буква - это ближе к концу графического изображения луча, к примеру В. Луч АВ.
2.Углом называется часть плоскости ограниченная двумя лучами.
Сами лучи называются сторонами угла, а общая точка, из которой лучи выходят, называются вершиной угла.
3.Градусная мера, которого 180 градусов.
1) 0, 1, бесконечность
2) прямая, исходящая из одной точки, обозначение - маленькие буквы греческого алфавита
3) два луча, выходящих из одной точки
4) имеющие равные стороны и углы
5) по линейке (или другим подобным при
6) делящая отрезок на 2 равные части
7) транспортиром (или другим подобным при
8) луч, делящий угол на две равные части
линейка, циркуль, рулетка
9) Градус обозначается °. Один оборот равен 360°. В прямом угле, таким образом, 90°, в развёрнутом — 180°.
1 градус = 0,017453293 радиан
Объяснение: