Чтобы узнать принадлежит точка окружности или нет, нужно подставить координаты точки в уравнение. А(3;4) 3^2+4^2 - 25 =0? 9+16-25=0 верно, значит точка А принадлежит окружности В(10;3) 10^2 + 3^2-25=0 100+9 -25=0 неверно, значит В не принадлежит окружности С(-1;3) (-1)^2+3^2-25=0, 1+9-25=0 неверно, С не принадлежит окружности Д(0;5) 0^2+5^2-25=0, 0+25-25=0 верно Д принадлежит окружности 2) подставим координаты центра и значение радиуса в уравнение окружности (х - 2)^2 +(y - (-3))^2=2^2, (x - 2)^2 + (y + 3)^2 = 4 - уравнение окружности. А(2; -3) (2 - 2)^2 + (-3 + 3)^2 = 4, 0+0=4 неверно, значит А не принадлежит этой окружности
Формула объема параллелепипеда V=S•h, где Ѕ - площадь основания параллелепипеда, h - его высота. В прямом параллелепипеде боковые ребра перпендикулярны основанию, поэтому высота равна его боковому ребру.
Диагональ основания делит его на два равных треугольника, площадь каждого, найденная по формуле Герона, равна 36 ед. площади. Площадь основания 2•36=72.
Площадь всей поверхности состоит из суммы площади боковой поверхности и площади двух оснований. Площадь боковой поверхности находим вычитанием из площади полной поверхности площади двух оснований. Ѕ(бок)=334-2•72=190.
S(бок)=Р•h. Периметр основания Р=2•(10+9)=38 ⇒ h=190:38=5 Искомый объём V=72•5=360 ( ед. объема).
А(3;4) 3^2+4^2 - 25 =0? 9+16-25=0 верно, значит точка А принадлежит окружности
В(10;3) 10^2 + 3^2-25=0 100+9 -25=0 неверно, значит В не принадлежит окружности
С(-1;3) (-1)^2+3^2-25=0, 1+9-25=0 неверно, С не принадлежит окружности
Д(0;5) 0^2+5^2-25=0, 0+25-25=0 верно Д принадлежит окружности
2) подставим координаты центра и значение радиуса в уравнение окружности
(х - 2)^2 +(y - (-3))^2=2^2, (x - 2)^2 + (y + 3)^2 = 4 - уравнение окружности.
А(2; -3) (2 - 2)^2 + (-3 + 3)^2 = 4, 0+0=4 неверно, значит А не принадлежит этой окружности
Формула объема параллелепипеда V=S•h, где Ѕ - площадь основания параллелепипеда, h - его высота. В прямом параллелепипеде боковые ребра перпендикулярны основанию, поэтому высота равна его боковому ребру.
Диагональ основания делит его на два равных треугольника, площадь каждого, найденная по формуле Герона, равна 36 ед. площади. Площадь основания 2•36=72.
Площадь всей поверхности состоит из суммы площади боковой поверхности и площади двух оснований. Площадь боковой поверхности находим вычитанием из площади полной поверхности площади двух оснований. Ѕ(бок)=334-2•72=190.
S(бок)=Р•h. Периметр основания Р=2•(10+9)=38 ⇒ h=190:38=5 Искомый объём V=72•5=360 ( ед. объема).