Расстояние от точки М до плоскости треугольника - это длина перпендикуляра, основание которого - центр окружности вписанной в прямоугольный треугольник. т.к. раз точка равноудалена от сторон треугольника, то наклонные ММ₁=ММ₂, значит, равны и их проекции, т.е. от сторон треугольника АВС равноудалена и точка О, значит, точка О-это центр вписанной окружности, по свойству касательной ОМ₁⊥ВС, радиус легко найти из соотношения r=(a+b-c)/2, стороны треугольника ищем по теореме Пифагора, для этого приходится решать квадратное уравнение, я его решил по Виету, хотя можно было и через дискриминант ,кому как удобнее, а затем из прямоугольного треугольника МОМ₁ нашел искомое расстояние, еще раз применив теорему Пифагора. Более детально во вложении.
Расстояние от точки М до плоскости треугольника - это длина перпендикуляра, основание которого - центр окружности вписанной в прямоугольный треугольник. т.к. раз точка равноудалена от сторон треугольника, то наклонные ММ₁=ММ₂, значит, равны и их проекции, т.е. от сторон треугольника АВС равноудалена и точка О, значит, точка О-это центр вписанной окружности, по свойству касательной ОМ₁⊥ВС, радиус легко найти из соотношения r=(a+b-c)/2, стороны треугольника ищем по теореме Пифагора, для этого приходится решать квадратное уравнение, я его решил по Виету, хотя можно было и через дискриминант ,кому как удобнее, а затем из прямоугольного треугольника МОМ₁ нашел искомое расстояние, еще раз применив теорему Пифагора. Более детально во вложении.
ответ 5 см.
Даны середины сторон треугольника АВС с координатами К(-2;2), L(0;7), М(4;-1).
Треугольник KLM подобен АВС с к = 1/2. Поэтому площадь АВС равна четырём площадям треугольника KLM.
Можно по разности координат точек найти длины сторон треугольника KLM, затем по формуле Герона найти площадь KLM.
Но можно поступить проще: есть простая формула определения площади треугольника по координатам вершин.
Площадь треугольника KLM равна:
S =(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)|.
Подставив координаты точек, находим: S(KLM) = 18 кв.ед.
Отсюда ответ: S(АВС) = 18*4 = 72 кв.ед.