Дан угол СОЕ равный 42°. Через его вершину проведён перпендикуляр ОД. Найдите градусную меру углов образованных при вершине. Ребят это , С чертежом и решением!
Расстояние между прямой и точкой равно длине отрезка, проведенного перпендикулярно между ними На рисунке приложения ОО1 - расстояние между центрами оснований цилиндра и равно его высоте. АВ - данная по условию хорда. НО - расстояние от хорды до центра нижнего основания, НО1 - расстояние от нее до центра верхнего основания. АО=ВО=R; ОН⊥АВ; О1Н⊥АВ
Площадь полной поверхности цилиндра равна сумме площадей двух оснований и боковой поверхности. S(полн)=2•Ѕ(осн)+Ѕ(бок)
S(полн)=2•πR²+2πR•H
Из прямоугольного треугольника АОН по т.Пифагора R²=AH²+OH²=(16:2)²+6²=100 см² ⇒ R=10 см; из прямоугольного треугольника ОО1Н высоту найдем по т.Пифагора H=OO1=√(O1H²-OH²)= √(6.5²-6²)=2,5 см
Расстояние между прямой и точкой равно длине отрезка, проведенного перпендикулярно между ними На рисунке приложения ОО1 - расстояние между центрами оснований цилиндра и равно его высоте. АВ - данная по условию хорда. НО - расстояние от хорды до центра нижнего основания, НО1 - расстояние от нее до центра верхнего основания. АО=ВО=R; ОН⊥АВ; О1Н⊥АВ
Площадь полной поверхности цилиндра равна сумме площадей двух оснований и боковой поверхности. S(полн)=2•Ѕ(осн)+Ѕ(бок)
S(полн)=2•πR²+2πR•H
Из прямоугольного треугольника АОН по т.Пифагора R²=AH²+OH²=(16:2)²+6²=100 см² ⇒ R=10 см; из прямоугольного треугольника ОО1Н высоту найдем по т.Пифагора H=OO1=√(O1H²-OH²)= √(6.5²-6²)=2,5 см
S(полн)=π•200+2π•10•2,5=250π см²
В правильной треугольной пирамиде проекция бокового ребра L на основание равна (2/3) высоты основания h.
(2/3)h = L*cos 30° = 6*(√3/2) = 3√3 см.
h = (3√3)*(3/2) = 9√3/2.
Отсюда находим сторону а основания из выражения:
h = a√3/2.
Тогда а = 2h/√3 = (2*(9√3/2))*/√3 = 9 см.
Площадь основания So = a²√3/4 = 81√3/4.
Находим апофему А:
А = √(L² - (a/2)²) = √(36 - (9/2)²) = √(36 - (81/4)) = √63/2.
Периметр основания Р = 3а = 3*9 = 27 см.
Находим площадь боковой поверхности.
Sбок = (1/2)РА = (1/2)*27*(√63/2) = 27√63/4 см².
Полная площадь поверхности пирамиды равна:
S = So + Sбок = (81√3/4) + (27√63/4) = (27/4)(3√3 + √63).
Высота H пирамиды равна: H = L*sin 30° = 6*(1/2) = 3 см.
Тогда объём пирамиды равен:
V = (1/3)SoH = (1/3)*(81√3/4)*3 = (81√3/4) см³.