OA =OD = OB =OC = Знайдіть площу рівнобічної трапеції, основи якої дорівнюють 10 см і 8 см, а діагоналі перпендикулярні до бічних сторін .
Дано: рисунок во вложении
ABCD равнобедренная трапеция
AD || BC ;
AB = CD ;
AD = 10 см ;
BC = 8 cм ;
∠ACD = ∠DBA =90° .
______________
S - ?
S = ( (AD +BC) /2 ) *h , нужно вычислить только высоту трапеции
Около равнобедренной трапеции можно омисать окружность (сумма противоположных углов равна 180°) . В данной задаче центром окружности является середина большого основания AD поскольку ∠ACD = ∠DBA =90° .
R= AD /2 = 10 /2 см =5 cм
OA = OD = OB = OC = R =5 cм
Высоту трапеции нетрудно определить из равнобедренного треугольника OBC . Проведем OH ⊥ BC , BH =CH =BC/2 =4 см ;
h = OH
Из ΔOHB по теореме Пифагоа OH =√(OB² - BH²) =√(5² - 4²) = 3 (см)
Объяснение:ответ на первый вопрос кроется в условии) , это прямые призмы, две четырехугольные, и первая треугольная.
1. В основании лежит прямоугольный треугольник, катеты которого 5 и 12, а гипотенуза √(25+144)=13, площадь полной поверхности равна сумме площадей двух оснований и боковой поверхности.
2*5*12/2+(5+12+13)*6=60+180=240-площадь полной поверхности, а боковой 180
2. 2*16*6+(32+12)*19=192+836=1028- площадь полной поверхности, а боковой 836
3. 2*40*80+(80+160)*60=6400+14400=20800- полная поверхность, а площадь боковой 14400
OA =OD = OB =OC = Знайдіть площу рівнобічної трапеції, основи якої дорівнюють 10 см і 8 см, а діагоналі перпендикулярні до бічних сторін .
Дано: рисунок во вложении
ABCD равнобедренная трапеция
AD || BC ;
AB = CD ;
AD = 10 см ;
BC = 8 cм ;
∠ACD = ∠DBA =90° .
______________
S - ?
S = ( (AD +BC) /2 ) *h , нужно вычислить только высоту трапеции
Около равнобедренной трапеции можно омисать окружность (сумма противоположных углов равна 180°) . В данной задаче центром окружности является середина большого основания AD поскольку ∠ACD = ∠DBA =90° .
R= AD /2 = 10 /2 см =5 cм
OA = OD = OB = OC = R =5 cм
Высоту трапеции нетрудно определить из равнобедренного треугольника OBC . Проведем OH ⊥ BC , BH =CH =BC/2 =4 см ;
h = OH
Из ΔOHB по теореме Пифагоа OH =√(OB² - BH²) =√(5² - 4²) = 3 (см)
S = 0,5*(10+8)*3 = 9*3 = 27 (см²)
ответ: 27 см².
Объяснение:ответ на первый вопрос кроется в условии) , это прямые призмы, две четырехугольные, и первая треугольная.
1. В основании лежит прямоугольный треугольник, катеты которого 5 и 12, а гипотенуза √(25+144)=13, площадь полной поверхности равна сумме площадей двух оснований и боковой поверхности.
2*5*12/2+(5+12+13)*6=60+180=240-площадь полной поверхности, а боковой 180
2. 2*16*6+(32+12)*19=192+836=1028- площадь полной поверхности, а боковой 836
3. 2*40*80+(80+160)*60=6400+14400=20800- полная поверхность, а площадь боковой 14400