Дана кривая y 2 −4y+10x+14 = 0. докажите, что данная кривая — парабола. найдите координаты её вершины. найдите значение её параметра p. постройте данную параболу. дана кривая 7y 2 +24xy+24x+62y+199
Наименьшее расстояние от точки до прямой - это перпендикуляр, опущенный из этой точки на прямую. Считаем, что циклон движется прямолинейно. Пусть метеостанция находится в точке начала координат М(0;0). Нам даны две точки, находящиеся на прямой движения циклона: С1(-5;24) и С2(-10/3;20). Уравнение прямой, проходящей через две точки: (x-x1)/(x2-x1) = (y-y1)/(y2-y1). В нашем случае: (x-5)/(-10/3-(-5)) = (y-24)/(20-24). Или 3(x-5)/5 = (y-24)/(-4). Или 12x+5y-60=0 это уравнение прямой в виде Ax+By+C=0, при А=12, В=5 и С=-60. Итак, 12x+5y-60=0 - уравнение прямой движения циклона. При х=0 y=12, при y=0 х=5. Пусть точка Q(0;12). Рассмотрим треугольники С1РQ и МKQ они подобны по острому углу. тогда: МК/С1Р=МQ/C1Q. MQ=24-12=12. C1Q=√(C1P²+PQ²) или С1Q=√(25+144)=13. Тогда:МК/5=12/13. Отсюда МК=12*5/13=60/13≈4,6км. ответ: Наименьшее расстояние, на которое эпицентр циклона приблизится к метеостанции, равно 4,6км.
№1. Угол между касательной и радиусом, проведенным к ней равен 90 градусов, поэтому ОА будет гипотенузой в треугольнике АВО, а ОВ - катетом. Дальше из теоремы Пифагора: АВ= и того, АВ=8 ответ:8см. №2. уголA+уголB+уголC=180°( по теореме о сумме углов в треугольнике) Уравнение: Пусть Х будет угол А, тогда 3Х угол В, а 5Х угол С Х+3Х+5Х=180 9Х=180 Х=180:9 Х=20° 20*3 равно=60градусов ответ: угол В= 60 градусов, угол С= 100 градусов. №3. Длина диаметра 20 см. Концы диаметра и данная точка окружности образуют вписанный угол, опирающийся на диаметр. Вписанный угол, опирающийся на диаметр, прямой. Значит, получившейся треугольник будет прямоугольным. Расстояние от другого конца диаметра до данной точки найдем по теореме Пифагора, как длину катета прямоугольного треугольника: =(20-16)(20+16)=4*36=144 см ответ:12 см.
Считаем, что циклон движется прямолинейно.
Пусть метеостанция находится в точке начала координат М(0;0).
Нам даны две точки, находящиеся на прямой движения циклона:
С1(-5;24) и С2(-10/3;20).
Уравнение прямой, проходящей через две точки:
(x-x1)/(x2-x1) = (y-y1)/(y2-y1). В нашем случае:
(x-5)/(-10/3-(-5)) = (y-24)/(20-24). Или
3(x-5)/5 = (y-24)/(-4). Или 12x+5y-60=0 это уравнение прямой в виде Ax+By+C=0, при А=12, В=5 и С=-60.
Итак, 12x+5y-60=0 - уравнение прямой движения циклона.
При х=0 y=12, при y=0 х=5.
Пусть точка Q(0;12).
Рассмотрим треугольники С1РQ и МKQ
они подобны по острому углу.
тогда: МК/С1Р=МQ/C1Q.
MQ=24-12=12.
C1Q=√(C1P²+PQ²) или С1Q=√(25+144)=13.
Тогда:МК/5=12/13.
Отсюда МК=12*5/13=60/13≈4,6км.
ответ: Наименьшее расстояние, на которое эпицентр циклона приблизится к метеостанции, равно 4,6км.
Угол между касательной и радиусом, проведенным к ней равен 90 градусов, поэтому ОА будет гипотенузой в треугольнике АВО, а ОВ - катетом. Дальше из теоремы Пифагора:
АВ=
и того, АВ=8
ответ:8см.
№2.
уголA+уголB+уголC=180°( по теореме о сумме углов в треугольнике)
Уравнение:
Пусть Х будет угол А, тогда 3Х угол В, а 5Х угол С
Х+3Х+5Х=180
9Х=180
Х=180:9
Х=20°
20*3 равно=60градусов
ответ: угол В= 60 градусов, угол С= 100 градусов.
№3.
Длина диаметра 20 см. Концы диаметра и данная точка окружности образуют вписанный угол, опирающийся на диаметр. Вписанный угол, опирающийся на диаметр, прямой.
Значит, получившейся треугольник будет прямоугольным. Расстояние от другого конца диаметра до данной точки найдем по теореме Пифагора, как длину катета прямоугольного треугольника:
=(20-16)(20+16)=4*36=144
см
ответ:12 см.