Дана окружность, диаметр которой ab и центр в точке о. другая окружность радиуса 8 см и центром в точке о1 внутренне касается первой окружности в точке b. из точки а проведены 2 хорды, касающиеся второй окружности, угол между которыми равен 60градусов . найдите длины этих хорд.
Треугольник О1СА - прямоугольный, угол САО1 = 30° (половина от 60°), О1С = 8;
поэтому О1А = 16; О1В = 8;
окончательно АВ = 16 + 8 = 24; АМ = АМ1 = АВ*√3/2 = 12√3
8/sin30=АО1
АО1=16
AB=16+8=24
теперь в треугольнике ALB, так как AL лежит против угла 180-90-30 =60 гр , тогда хорда AL
AL/sin60=24
AL=12√3