Дана окружность (O;OC). Из точки M, которая находится вне окружности, проведена секущая MB и касательная MC.
OD — перпендикуляр, проведённый из центра окружности к секущей MB и равный 5 см.
Найди радиус окружности, если известно, что MB равен 25 см и MC равен 5 см.
ΔАВК и ΔАСК. Пусть АВ =5 дм и АС=9 дм. ВК<СК.
По условию: ВК=х; СК=х+4. АК для этих треугольников общая.
ΔАВК: ВК²=АВ²-ВК²=25-х².
ΔАСК: ВК²=АС²-СК²=81-(х+4)²=81-х²-8х-16=-х²-8х+65.
25-х²=-х²-8х+65,
8х=65-25,
8х=40,
х=40:8=5.
ВК=5 дм.
СК=5+4=9 дм.
ответ: 5 дм. 9 дм.
Если же биссектриса внешнего угла не параллельна стороне ВС, то равенство углов В и С нарушается и стороны АВ и АС не равны. Что и требовалось доказать.