Дана окружность радиуса 6 с центром в начале координат а) запишите уравнение этой окружности б) найдите координаты точки пересечения даннной окружности с прямой
Они будут равны друг другу только в случае, если секущая делит углы на равные части, каждый из углов прямой, тоесть каждый равен другому.
Кстати, в рисунке 4 прямые a & b — не параллельны друг другу.
Но предположим, что параллельны.
Да, ∠1 == <∠, так как они соотственные углы, но ∠1 != ∠7, один из них обязательно должен быть тупым, а другой — острым.
Но ∠1 например равен <8, так как ∠1 == ∠5 (как сооветственные углы), а ∠5 и ∠8 — вертикальные друг другу углы, тоесть равны, что и означает, что ∠1 == ∠8.
При параллельных прямых и секущей, есть всего лишь 2 определения углов, ибо они состоят только из вертикальных углов, и зависят только от 2 параллельных, и одной секущей.
В пример: ∠1 = 120°; ∠3 = 60° (так как они смежные углы, то их сумма должна равнятся 180°).
∠1 & ∠5 — соответственные углы, тоесть равны друг другу => ∠5 == ∠1 == 120°.
Но ∠5 одновременно вертикален с углом ∠8, что и означает, что: ∠1 == ∠5 == ∠8.
∠8 и ∠4 также являются парой соответсвенных углов, тоесть они равны друг другу, что и означает: ∠1 == ∠5 == ∠8 == ∠4.
Объяснение:
h₁ -высота на а, h₂ -высота на в.
S параллелограмма равна произведению основания на высоту.
В параллелограмме оснований -2, поэтому и высот тоже две( каждая к своему основанию) .S=а*h ⇒a=S:h и h=S:а
1 строка.
а в h₁ h₂ S
25 40 8 /// 200.
h₂ =200:40=5
2 строка.
а в h₁ h₂ S
50 \\\ 20 25 .
S=50*20=1000, в=1000:25=40
3 строка.
а в h₁ h₂ S
40 50 \\\ 8 .
S=50*8=400, h₁=400:40=10.
4 строка.
а в h₁ h₂ S
10 \\\ \\\ 20 100
h₁=100*10=10, в=100:20=5.
5 строка.
а в h₁ h₂ S
\\\ \\\ 20 15 300
а=300*20=15, в=300:15=20.
∠5 != ∠7 (они не равны друг другу).
Они будут равны друг другу только в случае, если секущая делит углы на равные части, каждый из углов прямой, тоесть каждый равен другому.
Кстати, в рисунке 4 прямые a & b — не параллельны друг другу.
Но предположим, что параллельны.
Да, ∠1 == <∠, так как они соотственные углы, но ∠1 != ∠7, один из них обязательно должен быть тупым, а другой — острым.
Но ∠1 например равен <8, так как ∠1 == ∠5 (как сооветственные углы), а ∠5 и ∠8 — вертикальные друг другу углы, тоесть равны, что и означает, что ∠1 == ∠8.
При параллельных прямых и секущей, есть всего лишь 2 определения углов, ибо они состоят только из вертикальных углов, и зависят только от 2 параллельных, и одной секущей.
В пример: ∠1 = 120°; ∠3 = 60° (так как они смежные углы, то их сумма должна равнятся 180°).
∠1 & ∠5 — соответственные углы, тоесть равны друг другу => ∠5 == ∠1 == 120°.
Но ∠5 одновременно вертикален с углом ∠8, что и означает, что: ∠1 == ∠5 == ∠8.
∠8 и ∠4 также являются парой соответсвенных углов, тоесть они равны друг другу, что и означает: ∠1 == ∠5 == ∠8 == ∠4.
Одни и те же действия с углом <3(60°).
Каждый угол зависит от другого.