Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а. Доказать: а - касательная к окружности. Доказательство: Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности. Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
Обозначим прямоугольник буквами ABCD. AD=10 см. Тогда биссектриса угла А делит сторону CD на равные отрезки DF и CF. Угол D=90*, а угол DAF=45* (90:2, биссектриса делит угол пополам). По теореме о сумме углов в треугольнике угол AFD=180-(90+45)=45. И раз углы DAF и AFD равны, а они являются углами при основании треугольника ADF, следовательно, он равнобедренный. Тогда AD=DF=10 см. А раз DF=FC=10, то вся сторона DC=10+10=20 см. Противолежащая ей сторона AB также равна 20 см. И сторона BC=10 см. Итого P=10+10+20+20=60 см.
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а.
Доказать: а - касательная к окружности.
Доказательство:
Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности.
Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
Тогда биссектриса угла А делит сторону CD на равные отрезки DF и CF. Угол D=90*, а угол DAF=45* (90:2, биссектриса делит угол пополам). По теореме о сумме углов в треугольнике угол AFD=180-(90+45)=45. И раз углы DAF и AFD равны, а они являются углами при основании треугольника ADF, следовательно, он равнобедренный. Тогда AD=DF=10 см. А раз DF=FC=10, то вся сторона DC=10+10=20 см. Противолежащая ей сторона AB также равна 20 см. И сторона BC=10 см. Итого P=10+10+20+20=60 см.