S=AB*BD Рассмотрим прямоугольные треугольники ABD и KBM. Они подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого. Угол ABD - общий прямой, а углы BAD и BKM равны как соответственные углы при пересечении параллельных прямых AD и КМ секущей АВ (<BKM=<A=60°). Зная, что сумма острых углов прямоугольного треугольника равна 90°, находим угол ВМК: <BMK=90-<BKM=90-60=30°. Катет ВК прямоугольного треугольника KBM, лежащий против угла ВМК в 30°, равен половине гипотенузы МК, значит ВК=4:2=2 см По теореме Пифагора найдем ВМ: BM=√MK²-BK²=√16-4=√12=2√3 см У подобных треугольников ABD и KBM коэффициент подобия k равен: k=BM : BD=1 : 2 (по условию М - середина отрезка BD). Значит, BK : AB = 1 : 2, отсюда АВ = 2*ВК=2*2=4 см BM : BD=1 : 2, отсюда BD = 2*BM=4√3 см S=4*4√3=16√3 см²
эта задача чисто аналитическая ((только формулы)))
т.синусов:
10 / sin30 = 6 / sinC
sinC = sin30 * 6 / 10 = 0.5*0.6 = 0.3
т.косинусов:
10² = BC² + 6² - 2*6*BC*cos30
BC² - 6√3*BC - 64 = 0
D = 36*3 + 4*64 = 4*(27+64) = 4*91
BC = (6√3 - 2√91) / 2 = 3√3 - √91 < 0 -- не имеет смысла)))
BC = (6√3 + 2√91) / 2 = 3√3 + √91
еще раз т.косинусов:
(3√3 + √91)² = 10² + 6² - 2*6*10*cosA
cosA = (136 - (27 + 6√273 + 91)) / 120 = (18 - 6√273) / 120 = (3 - √273) / 20
cosA < 0 ⇒ треугольник тупоугольный)))
S(ABC) = 6*BC*sin30 / 2 = 3*BC / 2 = 1.5*(3√3 + √91)
Рассмотрим прямоугольные треугольники ABD и KBM. Они подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого. Угол ABD - общий прямой, а углы BAD и BKM равны как соответственные углы при пересечении параллельных прямых AD и КМ секущей АВ (<BKM=<A=60°).
Зная, что сумма острых углов прямоугольного треугольника равна 90°, находим угол ВМК:
<BMK=90-<BKM=90-60=30°.
Катет ВК прямоугольного треугольника KBM, лежащий против угла ВМК в 30°, равен половине гипотенузы МК, значит
ВК=4:2=2 см
По теореме Пифагора найдем ВМ:
BM=√MK²-BK²=√16-4=√12=2√3 см
У подобных треугольников ABD и KBM коэффициент подобия k равен:
k=BM : BD=1 : 2 (по условию М - середина отрезка BD). Значит,
BK : AB = 1 : 2, отсюда АВ = 2*ВК=2*2=4 см
BM : BD=1 : 2, отсюда BD = 2*BM=4√3 см
S=4*4√3=16√3 см²