Дана площадь треугольника kpn — 208 см2. известно, что точка b — серединная точка отрезка np. хватает ли данной информации для определения площади прямоугольника klmn? данной информации достаточно данной информации не хватает если возможно, определи площадь прямоугольника klmn (если нет, в окошке ответа пиши 0). площадь прямоугольника klmn = см2.
(26;4)
Объяснение:
Так как наши графики являются прямыми, функции выглядят так:
Найдем значения k и b, подставив значения точек A и B в уравнение и решив следующую систему:
Найдем b, подставив в :
Первое уравнение имеет такой вид:
- - - - - -
Найдем второе уравнение по аналогии (мне лень расписывать системами, так что я буду писать просто через новую строчку и в конце запишу итоговое решение системы)
- - - - -
- - - - -
Второе уравнение имеет следующий вид:
Чтобы найти точку пересечения, нужно приравнять уравнения графиков.
Чтобы найти y, нужно подставить в любое уравнение значение x.
ответ: (26;4)
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301