дана плоскость альфа. сторона треугольника абс аб пересекает альфа в точке м, а сторона бс в точке н. мн=4, бм/аб=бн/бс=2/5. доказать ас//альфа. найти ас
1. отрезок -прямая, которая имеет начало и конец, обозначается с обоих сторон точками.
луч - это прямая линия, которая имеет начало, но не имеет конца.
угол - это геометрическая фигура, образованная 2-мя лучами
развернутый угол-это угол, стороны которого составляют прямую
2. если две стороны и угол между ними одного треугольника соответственно равны двум сторонам между ними другого треугольника, то такие треугольники равны
3. т.к. треугольник прямоугольный, а один из углов 30гр, то второй катет будет равен половине гипотенузы 12*2=24см
4.т.к треуг.АВС равноб. следовательно углы при основании равны, а т.к. угол 1 вертикальный углу ВАС, значит они равны
Так как в условии сказано "В треугольнике постройте точку", а треугольник - это плоская фигура, то значит надо построить точку ВНУТРИ треугольника. Точка, равноудаленная от сторон треугольника - это центр вписанной окружности. Этот центр лежит на пересечении биссектрис треугольника. Таким образом, надо построить треугольник по трем сторонам, а затем построить биссектрисы двух углов (достаточно). Точка пересечения этих биссектрис и даст нам искомую точку. Для построения на прямой "а" откладываем сторону АС треугольника (например, равную 7см) и из точек А и С проводим дуги окружностей радиусами 5см и 6см соответственно. Пересечение этих дуг даст нам точку В (вершину треугольника). Теперь делим углы А и С пополам. Для этого проводим окружности с центрами в точках А и С так, чтобы получить точки пересечения D и E, F и G этих окружностей со сторонами АВ и АС, СВ и АС соответственно. Из точек D и E, F и G проводим дуги окружностей радиусами DE и FG, соответственно и соединив полученные точки пересечения окружностей, получаем искомые биссектрисы и точку O их пересечения. Это и есть искомая точка, равноудаленная от сторон треугольника.
Расстояние от найденной точки до сторон треугольника (радиус вписанной окружности) можно найти по формуле: r=S/p, где S - площадь треугольника, а р - его полупериметр. У нас p = (5+6+7):2=9. S=√[p(p-a)(p-b)(p-c)] = √(9*2*3*4)=6√6. r=6√6/9=2√6/3≈1,6см.
ответ: БИЛЕТ№1
1. отрезок -прямая, которая имеет начало и конец, обозначается с обоих сторон точками.
луч - это прямая линия, которая имеет начало, но не имеет конца.
угол - это геометрическая фигура, образованная 2-мя лучами
развернутый угол-это угол, стороны которого составляют прямую
2. если две стороны и угол между ними одного треугольника соответственно равны двум сторонам между ними другого треугольника, то такие треугольники равны
3. т.к. треугольник прямоугольный, а один из углов 30гр, то второй катет будет равен половине гипотенузы 12*2=24см
4.т.к треуг.АВС равноб. следовательно углы при основании равны, а т.к. угол 1 вертикальный углу ВАС, значит они равны
2 вертик угол ВС, а следовательно они равны
угол1 = углу ВАС, угол 2 - углу ВСА
следовательно углы =
Для построения на прямой "а" откладываем сторону АС треугольника (например, равную 7см) и из точек А и С проводим дуги окружностей радиусами 5см и 6см соответственно. Пересечение этих дуг даст нам точку В (вершину треугольника). Теперь делим углы А и С пополам. Для этого проводим окружности с центрами в точках А и С так, чтобы получить точки пересечения D и E, F и G этих окружностей со сторонами АВ и АС, СВ и АС соответственно. Из точек D и E, F и G проводим дуги окружностей радиусами DE и FG, соответственно и соединив полученные точки пересечения окружностей, получаем искомые биссектрисы и точку O их пересечения. Это и есть искомая точка, равноудаленная от сторон треугольника.
Расстояние от найденной точки до сторон треугольника (радиус вписанной окружности) можно найти по формуле: r=S/p, где S - площадь треугольника, а
р - его полупериметр. У нас p = (5+6+7):2=9.
S=√[p(p-a)(p-b)(p-c)] = √(9*2*3*4)=6√6.
r=6√6/9=2√6/3≈1,6см.