Дана правильная четырёхугольная пирамида КАВСD. В ней проведено сечение плоскостью, содержащей вершину К и середины рёбер АD и ВС. Вычислите площадь сечения, если сторона основания равна 8, а угол между плоскостями боковой грани и основания 45 градусов
основания:
а=22 см (R₁*2), b=32 см (R₂*2)
боковая сторона - образующая конуса l =13 см
найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса
перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса.
по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм
ответ: расстояние между центрами оснований усеченного конуса 12 см
меньший угол равен 19*2,5=47,5
больший угол равен 53*2,5=132,5
2) Пусть меньшая сторона параллелограмма равна х , а большая 9+х . Периметр (х+9+х)*2=62, (2х+9)*2 =62, 4х+18=62, 4х=44,х=11 Меньшая сторона параллелограмма равна 11
3) Периметр (3х+7х)*2=20, 20х =20,х=1
большая сторона равна 7*1=7
4) Сумма 2- х противоположных углов равна 140 ( смежных не может быть , так как их сумма 180) . Противоположные углы равны. 140:2=70. 180-70=110- больший угол