Площадь равнобедренной трапеции по основаниям и высоте находится по формуле: S= (a+b) / 2 × h, где a и b - длины оснований, h - высота h= 3 , a=10, b=3 S= (10+2) /2 × 3 S=6×3 = 18
Для нахождения периметра мы должны сначала найти длину боковой стороны трапеции. Так как трапеция равнобедренная, если опустить высоты из обоих тупых углов к противоположному основанию, мы получим РАВНЫЕ прямоугольные треугольники справа и слева и прямоугольник в середине. Нам нужно вычислить гипотенузу треугольников - это и будет боковая сторона трапеции. Мы знаем длину одного из катетов : h=3, длина второго катета будет равняться разности оснований, делёной на 2. (10-2)/2=4. Дальше вычисляем гипотенузу по теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов: √( 3²+4²)=√25=5 - длина боковой стороны. складываем боковые стороны и основания - получаем периметр. P= 10+2+5+5 =22
Треугольник АВС - прямоугольный, ∠В=90°, поскольку у в прямоугольнике все углы =90° Сумма углов любого треугольника 180°, в т.ч. и нашего треугольника АВС. ∠А+∠В+∠С=90° Поскольку по условию задания CAB=2*ACB, значит в треугольнике АВС ∠А=2*∠С, выходит 2*∠С+90°+∠С=180° 3*∠С=90° ∠С=30°. Значит ∠А=2*∠С=2*30°=60°. Рассмотрим прямоугольный треугольник АВС дальше: АС-гипотенуза, АВ и ВС - это катеты cos ∠А=АВ/АС sin ∠А=ВС/АС
cos ∠А=cos 60°=1/2=0,5 sin ∠А=sin 60°=√3/2=0,5√3
cos ∠А=АВ/АС 0,5=АВ/АС, отсюда АВ=0,5АС=0,5*10см=5см
sin ∠А=ВС/АС 0,5√3=ВС/АС, отсюда ВС=0,5АС√3=0,5*10√3=5√3 см
У прямоугольника противоположные стороны равны, значит АВ=СЕ=5 см ВС=АЕ=5√3 см
Периметр равен сумме длины всех сторон прямоугольника, то есть Периметр=АВ+ВС+СЕ+АЕ Периметр=5+ 5√3+ 5+5√3 Периметр=10+10√3 Периметр=10*(1+√3) см
S= (a+b) / 2 × h, где a и b - длины оснований, h - высота
h= 3 , a=10, b=3
S= (10+2) /2 × 3
S=6×3 = 18
Для нахождения периметра мы должны сначала найти длину боковой стороны трапеции. Так как трапеция равнобедренная, если опустить высоты из обоих тупых углов к противоположному основанию, мы получим РАВНЫЕ прямоугольные треугольники справа и слева и прямоугольник в середине. Нам нужно вычислить гипотенузу треугольников - это и будет боковая сторона трапеции.
Мы знаем длину одного из катетов : h=3, длина второго катета будет равняться разности оснований, делёной на 2. (10-2)/2=4.
Дальше вычисляем гипотенузу по теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов:
√( 3²+4²)=√25=5 - длина боковой стороны.
складываем боковые стороны и основания - получаем периметр.
P= 10+2+5+5 =22
Сумма углов любого треугольника 180°, в т.ч. и нашего треугольника АВС.
∠А+∠В+∠С=90°
Поскольку по условию задания CAB=2*ACB, значит в треугольнике АВС
∠А=2*∠С, выходит
2*∠С+90°+∠С=180°
3*∠С=90°
∠С=30°.
Значит ∠А=2*∠С=2*30°=60°.
Рассмотрим прямоугольный треугольник АВС дальше:
АС-гипотенуза, АВ и ВС - это катеты
cos ∠А=АВ/АС
sin ∠А=ВС/АС
cos ∠А=cos 60°=1/2=0,5
sin ∠А=sin 60°=√3/2=0,5√3
cos ∠А=АВ/АС
0,5=АВ/АС, отсюда АВ=0,5АС=0,5*10см=5см
sin ∠А=ВС/АС
0,5√3=ВС/АС, отсюда ВС=0,5АС√3=0,5*10√3=5√3 см
У прямоугольника противоположные стороны равны, значит
АВ=СЕ=5 см
ВС=АЕ=5√3 см
Периметр равен сумме длины всех сторон прямоугольника, то есть
Периметр=АВ+ВС+СЕ+АЕ
Периметр=5+ 5√3+ 5+5√3
Периметр=10+10√3
Периметр=10*(1+√3) см
ответ: периметр прямоугольника = 10*(1+√3) см