Площа трикутника за найпоширенішою формулою рівна половині добутку основи на висоту, проведеної до неї. Виконуємо обчислення
S= 24*16/2=192 (кв. см.)
Для визначення периметру нам потрібно відшукати довжину бічної сторони.
У рівнобедреному трикутнику висота, проведена до основи в, є бісектрисою і медіаною.
За теоремою Піфагора знаходимо бічну сторону трикутника
b=sqrt(16^2+(24/2)^2)=20 (cм)
Периметр - сума всіх сторін
P= 2*20+24=64 (см)
Знаходимо радіус вписаного в трикутник кола за формулою
r=S/(2*P)=192/(64/2)=192/32=6 (см).
ЗАДАЧА 2 Основа рівнобедреного трикутника дорівнює 24 см бічна сторона 13 см. Обчисліть площу трикутника?
Розв'язання: Площа рівна пів добутку основи на висоту.
Основа нам відома, висоту знаходимо за теоремою Піфагора
h=√(b²-a²/4)= √(169-144)=5 (см).
Далі обчислюємо площу
S=a*h/2=24*5/2=60 (см. кв.)
Объяснение:
ответ: 1) 70*, 110*, 70*, 110*.
2) 50*, 130*, 50*, 130*.
3) 30*,150*, 30*, 150*.
Сумма углов в четырехугольнике (а параллелограмм - четырехугольник) равно 360*.
Кроме того противоположные углы равны, а сумма углов, прилежащих к одной из сторон равна 180*.
Пусть угол А - острый, а угол В - тупой.
Значит
1) ∠В-∠А=40*. То есть ∠В больше ∠А на 40*.
Пусть ∠А=х, тогда ∠В=х+40. В сумме они равны 180*.
х+х+40=180*;
2х=140*;
х=70* - ∠А;
х+40*=70*+40*=110* - ∠В.
Так как противоположные углы в параллелограмме равны, то:
∠С=∠А=70*;
∠D=∠B=110*
Проверим:
70*+110*+70*+110*=140*+220*=360*. Все верно.
2) ∠В-∠А=80*. То есть угол В на 80* больше угла А.
∠А=х, ∠В=х+80*.
х+х+80*=180*
2х=100*;
х=50* - ∠А;
х+80*=50*+80*=130* - ∠В.
∠А=∠С=50*;
∠В=∠D=130*.
50*+130*+50*+130*=100*+260*=360*. Все верно.
3) ∠В-∠А=120*. Значит ∠В больше ∠А на 120*.
∠А=х, ∠В=х+120*.
х+х+120*=180*.
2х=60*;
х=30* - ∠А;
х+120*=30*+120*=150* - ∠В.
∠А=∠С=30*;
∠В=∠D=150*.
30*+150*+30*+150*=60*+300*=360*. Все верно.
Площа трикутника за найпоширенішою формулою рівна половині добутку основи на висоту, проведеної до неї. Виконуємо обчислення
S= 24*16/2=192 (кв. см.)
Для визначення периметру нам потрібно відшукати довжину бічної сторони.
У рівнобедреному трикутнику висота, проведена до основи в, є бісектрисою і медіаною.
За теоремою Піфагора знаходимо бічну сторону трикутника
b=sqrt(16^2+(24/2)^2)=20 (cм)
Периметр - сума всіх сторін
P= 2*20+24=64 (см)
Знаходимо радіус вписаного в трикутник кола за формулою
r=S/(2*P)=192/(64/2)=192/32=6 (см).
ЗАДАЧА 2 Основа рівнобедреного трикутника дорівнює 24 см бічна сторона 13 см. Обчисліть площу трикутника?
Розв'язання: Площа рівна пів добутку основи на висоту.
Основа нам відома, висоту знаходимо за теоремою Піфагора
h=√(b²-a²/4)= √(169-144)=5 (см).
Далі обчислюємо площу
S=a*h/2=24*5/2=60 (см. кв.)
Объяснение:
ответ: 1) 70*, 110*, 70*, 110*.
2) 50*, 130*, 50*, 130*.
3) 30*,150*, 30*, 150*.
Объяснение:
Сумма углов в четырехугольнике (а параллелограмм - четырехугольник) равно 360*.
Кроме того противоположные углы равны, а сумма углов, прилежащих к одной из сторон равна 180*.
Пусть угол А - острый, а угол В - тупой.
Значит
1) ∠В-∠А=40*. То есть ∠В больше ∠А на 40*.
Пусть ∠А=х, тогда ∠В=х+40. В сумме они равны 180*.
х+х+40=180*;
2х=140*;
х=70* - ∠А;
х+40*=70*+40*=110* - ∠В.
Так как противоположные углы в параллелограмме равны, то:
∠С=∠А=70*;
∠D=∠B=110*
Проверим:
70*+110*+70*+110*=140*+220*=360*. Все верно.
2) ∠В-∠А=80*. То есть угол В на 80* больше угла А.
∠А=х, ∠В=х+80*.
х+х+80*=180*
2х=100*;
х=50* - ∠А;
х+80*=50*+80*=130* - ∠В.
∠А=∠С=50*;
∠В=∠D=130*.
Проверим:
50*+130*+50*+130*=100*+260*=360*. Все верно.
3) ∠В-∠А=120*. Значит ∠В больше ∠А на 120*.
∠А=х, ∠В=х+120*.
х+х+120*=180*.
2х=60*;
х=30* - ∠А;
х+120*=30*+120*=150* - ∠В.
∠А=∠С=30*;
∠В=∠D=150*.
Проверим:
30*+150*+30*+150*=60*+300*=360*. Все верно.