Дана правильная шестиугольная призма, сторона основания которой равна 17 см.
Высота призмы равна 93–√ см. Вычислить площадь диагональных сечений призмы.
Площадь меньшего диагонального сечения равна___см2.
Площадь большего диагонального сечения равна___3–√ см2.
Найдите длину отрезка A1B1, если AB = 15 см, а AA1: AC = 2: 3.
-------
Плоскость треугольника АВС пересекается с плоскостью. параллельной по условию стороне АВ.
Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей.
Отрезок А1В1- часть линии пересечения данной плоскости и плоскости треугольника АВС. Следовательно, А1В1 || АВ.
АС и ВС - секущие при параллельных прямых, отсюда
треугольники А1СВ1 и АСВ - подобны.
Из их подобия следует отношение
А1В1:АВ=2:3
А1В1:15=2:3
3 А1В1=30
А1В1=10 см
Пусть сторона АВ перпендикулярна к прямой 2x–y–1=0.
Это уравнение можно выразить с угловым коэффициентом:
y = 2x – 1.,Тогда угловой коэффициент к(АВ) = -1/2.
Уравнение АВ: у = (-1/2)х + в. Для определения в подставим координаты точки А: -3 = (-1/2)*5 + в, тогда в = -3 + (5/2) = -1/2.
Уравнение АВ: у = (-1/2)х - (1/2).
Сторона АС перпендикулярна к прямой 13x+4y–7=0.
Это уравнение можно выразить с угловым коэффициентом:
y = (-13/4)x + (7/4).Тогда угловой коэффициент к(АС) = 4/13.
Уравнение АС: у = (4/13)х + в. Для определения в подставим координаты точки А: -3 = (4/13)*5 + в, тогда в = -3 - (20/13) = -59/13.
Уравнение АС: у = (4/13)х - (59/13).
Точка С - это пересечение прямых АС и 2x–y–1=0. Приравняем:
(4/13)х - (59/13) = 2x – 1.
Координаты точки С: х = (-23/11), у = (-57/11).
Координаты точки пересечения высот
y=ax+b высот Точка D(пер_высот)
a b x y
h(AC) -3,25 1,75 0,52381 0,04762
h(AB) 2 -1.
Координаты точки В находим как пересечение:
y=ax+b стор и выс Точка В
a b x y
АВ -0,5 -0,5 0,81818 -0,90909
h(AС) -3,25 1,75.
Координаты точки В: х = 0,81818, у = -0,90909.