Дана правильная треугольная призма АВСА1В1С1, все ребра которой равны 6. Т — середина ребра А1В1. Е — середина ребра ВВ1. Постройте сечение призмы плоскостью ТЕС и найдите его периметр
Очевидно, становится из рисунка, что, если внешний угол равен 135 градусам.
Тогда, поскольку внешний угол равен сумме двух других углов треугольника, то
первый непрямой угол будет равен 135-90= 45 градусов. Второй угол, соответственно, 180-90-45= так же 45 градусов.
Второе решение: внешний угол с прилежащим к нему углом треугольника составляют 180 градусов. Тогда, угол треугольника, прилежащий к внешнему, равен 180-135= 45 градусов. Третий угол так же равен 180-45-90 (треугольник прямоугольный) = 45 градусам.
ответ: острые углы этого треугольника равны между собой и равны 45 градусам.
Берем линейку и карандаш, строим рисунок.
Очевидно, становится из рисунка, что, если внешний угол равен 135 градусам.
Тогда, поскольку внешний угол равен сумме двух других углов треугольника, то
первый непрямой угол будет равен 135-90= 45 градусов. Второй угол, соответственно, 180-90-45= так же 45 градусов.
Второе решение: внешний угол с прилежащим к нему углом треугольника составляют 180 градусов. Тогда, угол треугольника, прилежащий к внешнему, равен 180-135= 45 градусов. Третий угол так же равен 180-45-90 (треугольник прямоугольный) = 45 градусам.
ответ: острые углы этого треугольника равны между собой и равны 45 градусам.
1
теорема косинусов
а)
ВС^2=AB^2+AC^2 - 2*AB*AC*cosA=11^2+8^2 - 2*11*8*cos60=121+64-2*88*1/2=97
BC=√97 см
б)
AC^2=AB^2+BC^2 - 2*AB*BC*cosB=13^2+7^2-2*13*7*cos60=169+49-2*13*7*1/2=127
АС=√127 см
2
теорема косинусов
а)
cos120= - cos60
NP^2=MN^2+MP^2 -2 MN*MP*cos120=7^2+15^2-2*7*15*(-cos60)=
=49+225-2*7*15*(-1/2)=379
NP=√379 см
б)
NP^2=
3
cos120= - cos60
а) меньшую диагональ (ВD)
лежит напротив острого угла <60
BD^2=6^2+8^2-2*6*8*cos60=36+64-2*48*(1/2)=52
BD=√52=2√13 см
б) большую диагональ (АС)
лежит напротив тупого угла <120
AC^2=6^2+8^2-2*6*8*cos120=36+64-2*48*(-1/2)=148
AC=√148=2√37 см
4
а) его стороны равны 8 мм и 10 мм, а одна из диагоналей равна 14 мм;
14^2=8^2+10^2 -2*8*10*cos<A
196=64+100 - 160*cos<A
32= - 160*cos<A
cos<A= - 32/160 =-1/5= -0.2
б) его стороны равны 12 дм и 14 дм, а одна из диагоналей равна 20 дм.
20^2=12^2+14^2 -2*12*14*cos<B
400=144+196-336* cos<B
60 =-336* cos<B
cos<B = - 60/336 = - 5/28
5
диагональ (d)и две стороны (a) (b) образуют треугольник
значит третий угол треугольника <A=180-20-60=100 град
дальше по теореме синусов
a/sin20=b/sin60=d/sinA=25/sin100
a=sin20*25/sin100=0.3420*25/0.9848=8.7 см
b= sin60*25/sin100=√3/2*25/0.9848=22 см
6
угол <С=180-<A-<B=180-30-40=110
по теореме синусов
AC/sin<B=BC/sin<A=AB/sin<C=2R
AC/sin40=BC/sin30=16/sin110
AC=sin40*16/sin110= 0.6428 *16/0.9397=10.94 см =11 см
BC= sin30*16/sin110=1/2*16/0.9397= 8.5 см
радиус описанной окружности
AB/sin<C=2R
R= AB/(2*sin<C)=16 / (2*sin110)=8/ sin110 = 8.5 см
7