В прямоугольном треугольнике острые углы относятся как 1:2. Больший катет равен 4 √ 3. Найти радиус вписанной окружности. Обозначим стороны прямоугольного треугольника как катеты а =4корень(3), b и гипотенуза с Пусть меньший острый угол равен х, тогда второй острый угол равен 2х Запишем уравнение и найдем углы х+2х+90 =180 3х=90 х=30 градусов Второй острый угол равен 2х=2*30=60 градусов Найдем второй меньший катет(он лежит напротив меньшего острого угла) b=a*tg30 = 4корень(3)*(1/корень(3))=4 Гипотенузу с определим по теореме Пифагора с=корень(а2+b^2)=корень((4корень(3))^2+4^2)=8 Радиус вписаной окружности определим по формуле R=(a+b-c)/2=(4корень(3)+4-8)/2=2корень(2)-2 =2(корень(2)-1)=0,828
в прямокутному трикутнику гострі кути відносяться як 1:2. Більший катет дорівнює 4 √ 3. Знайти радіус вписаного кола. Позначимо сторони прямокутного трикутника як катети а = 4корень (3), b і гіпотенуза с. Нехай менший гострий кут дорівнює х, тоді другий гострий кут дорівнює 2х Запишемо рівняння і знайдемо кути х +2 х +90 = 180 3х = 90 х = 30 градусів Другий гострий кут дорівнює 2х = 2 * 30 = 60 градусів Знайдемо другий менший катет (він лежить навпроти меншого гострого кута) b = a * tg30 = 4корень (3) * (1/корень (3)) = 4 Гіпотенузу c визначимо по теоремі Піфагора c = корінь (А2 + b ^ 2) = корінь ((4корень (3)) ^ 2 +4 ^ 2) = 8 Радіус вписаного кола визначимо за формулою R = (a + bc) / 2 = (4корень (3) +4-8) / 2 = 2корень (2) -2 = 2 (корінь (2) -1) = 0,828
Этот интерфейс меня добьет. Я набираю комментарий, и он НЕ отображается. Ладно, продублирую в решении. Это условие - неверное. Пусть М - точка пересечения заданной биссектрисы с искомой стороной. Если продлить биссектрису за М на 8, и с центром в полученной точке построить окружность радиуса 12 (эта окружность пройдет через заданную точку пересечения биссектрис), то искомой стороной может быть ЛЮБАЯ хорда построенной окружности, проходящая через точку М.
Можно всё это строго доказать, но для доказательства НЕВЕРНОСТИ САМОЙ ПОСТАНОВКИ ЗАДАЧИ достаточно увидеть, что это построение верно в 2 случаях 1. треугольник равнобедренный, сторона равна 8√5 (это 2√(12^2 - 8^2)) 2. вырожденный треугольник, когда угол, который биссектриса делит пополам, равен 0. Тогда сторона равна 24 - диаметру построенной окружности. В общем случае сторона может принимать значения в промежутке между 8√5 и 24.
Обозначим стороны прямоугольного треугольника как катеты а =4корень(3), b и гипотенуза с
Пусть меньший острый угол равен х, тогда второй острый угол равен 2х
Запишем уравнение и найдем углы
х+2х+90 =180
3х=90
х=30 градусов
Второй острый угол равен 2х=2*30=60 градусов
Найдем второй меньший катет(он лежит напротив меньшего острого угла)
b=a*tg30 = 4корень(3)*(1/корень(3))=4
Гипотенузу с определим по теореме Пифагора
с=корень(а2+b^2)=корень((4корень(3))^2+4^2)=8
Радиус вписаной окружности определим по формуле
R=(a+b-c)/2=(4корень(3)+4-8)/2=2корень(2)-2 =2(корень(2)-1)=0,828
в прямокутному трикутнику гострі кути відносяться як 1:2. Більший катет дорівнює 4 √ 3. Знайти радіус вписаного кола.
Позначимо сторони прямокутного трикутника як катети а = 4корень (3), b і гіпотенуза с.
Нехай менший гострий кут дорівнює х, тоді другий гострий кут дорівнює 2х
Запишемо рівняння і знайдемо кути
х +2 х +90 = 180
3х = 90
х = 30 градусів
Другий гострий кут дорівнює
2х = 2 * 30 = 60 градусів
Знайдемо другий менший катет (він лежить навпроти меншого гострого кута) b = a * tg30 = 4корень (3) * (1/корень (3)) = 4
Гіпотенузу c визначимо по теоремі Піфагора
c = корінь (А2 + b ^ 2) = корінь ((4корень (3)) ^ 2 +4 ^ 2) = 8
Радіус вписаного кола визначимо за формулою
R = (a + bc) / 2 = (4корень (3) +4-8) / 2 = 2корень (2) -2 = 2 (корінь (2) -1) = 0,828
Это условие - неверное.
Пусть М - точка пересечения заданной биссектрисы с искомой стороной. Если продлить биссектрису за М на 8, и с центром в полученной точке построить окружность радиуса 12 (эта окружность пройдет через заданную точку пересечения биссектрис), то искомой стороной может быть ЛЮБАЯ хорда построенной окружности, проходящая через точку М.
Можно всё это строго доказать, но для доказательства НЕВЕРНОСТИ САМОЙ ПОСТАНОВКИ ЗАДАЧИ достаточно увидеть, что это построение верно в 2 случаях
1. треугольник равнобедренный, сторона равна 8√5 (это 2√(12^2 - 8^2))
2. вырожденный треугольник, когда угол, который биссектриса делит пополам, равен 0. Тогда сторона равна 24 - диаметру построенной окружности.
В общем случае сторона может принимать значения в промежутке между 8√5 и 24.