Средняя линия треугольника - это отрезок, соединяющий середины двух сторон треугольника. Средняя линия треугольника параллельна его третьей стороне и равна ее половине.
5. 1) КН║АС, КН = АС/2 как средняя линия треугольника АВС, МР║АС, МР = АС/2 как средняя линия треугольника ADC, значит КН║МР и КН = МР, а если противоположные стороны четырехугольника параллельны и равны, то это параллелограмм. КНРМ - параллелограмм. 2) Аналогично доказываем, что КНРМ параллелограмм и добавим, что НР = KM = BD/2 (как средние линии соответствующих треугольников) КН = МР = АС/2. В прямоугольнике диагонали равны, значит стороны параллелограмма КНРМ равны, и следовательно это ромб. 3) Все то же и КН║МР║АС, КМ║НР║BD. Диагонали ромба перпендикулярны, значит и смежные стороны параллелограмма КНРМ перпендикулярны, и следовательно, это прямоугольник. 4) Так как квадрат - это прямоугольник с равными сторонами, то из задач 2) и 3) следует, что КНРМ - ромб с перпендикулярными смежными сторонами, то есть квадрат.
6. По свойству средней линии треугольника: КН = АС/2 = 15/2 = 7,5 см НР = АВ/2 = 10/2 = 5 см КР = ВС/2 = 12/2 = 6 см
Средняя линия треугольника параллельна его третьей стороне и равна ее половине.
5.
1) КН║АС, КН = АС/2 как средняя линия треугольника АВС,
МР║АС, МР = АС/2 как средняя линия треугольника ADC, значит
КН║МР и КН = МР, а если противоположные стороны четырехугольника параллельны и равны, то это параллелограмм.
КНРМ - параллелограмм.
2) Аналогично доказываем, что КНРМ параллелограмм и добавим, что
НР = KM = BD/2 (как средние линии соответствующих треугольников)
КН = МР = АС/2.
В прямоугольнике диагонали равны, значит стороны параллелограмма КНРМ равны, и следовательно это ромб.
3) Все то же и
КН║МР║АС, КМ║НР║BD.
Диагонали ромба перпендикулярны, значит и смежные стороны параллелограмма КНРМ перпендикулярны, и следовательно, это прямоугольник.
4) Так как квадрат - это прямоугольник с равными сторонами, то из задач 2) и 3) следует, что КНРМ - ромб с перпендикулярными смежными сторонами, то есть квадрат.
6. По свойству средней линии треугольника:
КН = АС/2 = 15/2 = 7,5 см
НР = АВ/2 = 10/2 = 5 см
КР = ВС/2 = 12/2 = 6 см
46.5. Искомая площадь вычисляется:
S=S₁-S₂-S₃,
S₁=π(AB)²/8; S₂=π(AD)²/8; S₃=π(DB)²/8.
S=π/8(AB²-AD²-DB²).
Подставим AB=AD+DB, CD²=AD*DB.
S=π/8(AD²+DB²+2AD*DB-AD²-DB²)=π*AD*DB/4 = π*CD²/4.
46.4. Рассмотрим четверть квадрата (Рис. ниже) со стороной a. Найдем S₁.
S₁=Sсек -Sтреуг, где Sсек - площадь сектора круга, ограниченного радиусами AB и AC, Sтреуг - площадь треугольника ABC.
Sсек = Sкр/4 = πa²/16.
Sтреуг = a²/8.
S₁ = a²/8*(π/2-1).
Искомая площадь: S=8*S₁ = a²*(π/2-1). По условию a=4 см.
S = 16(π/2-1) см.
46.6. Площадь (из задачи 46.5) вычисляется:
S=π*CD²/4 = π*AD*DB/4 = π*6*4/4 = 6π см².
Длина дуги окружности диаметра AB: L₁=πAB/2=5π см.
Длина дуги окружности диаметра AD: L₂=πAD/2=3π см.
Длина дуги окружности диаметра DB: L=πDB/2=2π см.
Периметр: L=L₁+L₂+L₃ = 5π+3π+2π = 10π см.