Введем обозначения: ABC - исходный треугольник с прямым углом C, высотой CN и биссектрисой AL пересекающимися в точке K.
Нетрудно видеть, что прямоугольные треугольники ACL и ANK подобны. И коэффициент подобия по отношению их гипотенуз |AL|/|AK| = (9+6)/9 = 15/9 = 5/3.
Стало быть и их катеты |AC|/|AN| = 5/3. Но прямоугольный треугольник ACN (в котором эти стороны гипотенуза и катет) подобен всему треугольнику ABC в котором стало быть стороны |AB|, |AC| и |CB|относятся как 5:3:4 (4 = корень(5*5-3*3).
Достаточно узнать длину |AC| чтобы найти всю площадь. S = |AC|*|CB|/2 = |AC|*(4/3)*|AC|/2 = (2/3)*|AC|^2
Но |AC| равна 15*cos(A/2), где по формуле косинуса половинного угла cos(A/2) = корень((1+cos(A))/2) = корень((1+3/5)/2) = корень(4/5).
То есть S = (2/3)*(15*корень(4/5))^2 = (2/3)*15*15*(4/5) = 2*4*15 = 120
1. От точки А строим угол, равный данному (описано в первом
варианте) и на полученной второй его стороне откладываем отрезок
АВ, равный данной гипотенузе. Из точки В опускаем перпендикуляр на
прямую "а". Для этого:
Из точки В проводим окружность любого радиуса R, чтобы пересекла
прямую "а" в точках G и Q. Из точек G и Q тем же радиусом проводим
две дуги, пересекающиеся в точке M. Прямая ВМ - искомый перпендикуляр.
На пересечении прямых ВМ и "а" ставим точку С.
Соединяем точки А,В и С и получаем прямоугольный треугольник АВС
с прямым углом <C и с заданными гипотенузой и острым углом.
2. На прямой "а" откладываем отрезок, равный одной из сторон, например, АС. Проводим окружности с центрами в точках А и С радиусами, равными двум другим сторонам, например, АВ и СВ соответственно. В точке пересечения этих окружностей получаем точку В. Треугольник построен.
3. На прямой "а" откладываем отрезок, равный стороне АВ, к которой проведена высота СН. Проводим окружность радиуса ВС с центром в точке В. Из точки В к прямой "а" восстанавливаем перпендикуляр и на нем откладываем отрезок ВР, равный высоте СН. Из точки Р проводим перпендикуляр к отрезку ВР и в точке пересечения этого перпендикуляра с проведенной ранее окружностью ставим точку С.
Соединив точки А,С и В получаем искомый треугольник.
P.S. Построение перпендикуляра к прямой в заданную точку не описываю - это стандартное построение.
Введем обозначения: ABC - исходный треугольник с прямым углом C, высотой CN и биссектрисой AL пересекающимися в точке K.
Нетрудно видеть, что прямоугольные треугольники ACL и ANK подобны. И коэффициент подобия по отношению их гипотенуз |AL|/|AK| = (9+6)/9 = 15/9 = 5/3.
Стало быть и их катеты |AC|/|AN| = 5/3. Но прямоугольный треугольник ACN (в котором эти стороны гипотенуза и катет) подобен всему треугольнику ABC в котором стало быть стороны |AB|, |AC| и |CB|относятся как 5:3:4 (4 = корень(5*5-3*3).
Достаточно узнать длину |AC| чтобы найти всю площадь. S = |AC|*|CB|/2 = |AC|*(4/3)*|AC|/2 = (2/3)*|AC|^2
Но |AC| равна 15*cos(A/2), где по формуле косинуса половинного угла cos(A/2) = корень((1+cos(A))/2) = корень((1+3/5)/2) = корень(4/5).
То есть S = (2/3)*(15*корень(4/5))^2 = (2/3)*15*15*(4/5) = 2*4*15 = 120
Объяснение:
1. От точки А строим угол, равный данному (описано в первом
варианте) и на полученной второй его стороне откладываем отрезок
АВ, равный данной гипотенузе. Из точки В опускаем перпендикуляр на
прямую "а". Для этого:
Из точки В проводим окружность любого радиуса R, чтобы пересекла
прямую "а" в точках G и Q. Из точек G и Q тем же радиусом проводим
две дуги, пересекающиеся в точке M. Прямая ВМ - искомый перпендикуляр.
На пересечении прямых ВМ и "а" ставим точку С.
Соединяем точки А,В и С и получаем прямоугольный треугольник АВС
с прямым углом <C и с заданными гипотенузой и острым углом.
2. На прямой "а" откладываем отрезок, равный одной из сторон, например, АС. Проводим окружности с центрами в точках А и С радиусами, равными двум другим сторонам, например, АВ и СВ соответственно. В точке пересечения этих окружностей получаем точку В. Треугольник построен.
3. На прямой "а" откладываем отрезок, равный стороне АВ, к которой проведена высота СН. Проводим окружность радиуса ВС с центром в точке В. Из точки В к прямой "а" восстанавливаем перпендикуляр и на нем откладываем отрезок ВР, равный высоте СН. Из точки Р проводим перпендикуляр к отрезку ВР и в точке пересечения этого перпендикуляра с проведенной ранее окружностью ставим точку С.
Соединив точки А,С и В получаем искомый треугольник.
P.S. Построение перпендикуляра к прямой в заданную точку не описываю - это стандартное построение.