б) Искомое расстояние - длина отрезка АН, перпендикулярного к плоскости КМЕ.
Т.к. АМ=МS; АЕ=ВЕ; АК=КС, то МК и МЕ – средние линии треугольников АМК и АМЕ.
∆ КАЕ - равнобедренный, его высота АО равна половине высоты АТ треугольника АВС.
АТ по т. Пифагора из ∆ АТС=√(АС² -ТС² )=2√5
∆ КМЕ - равнобедренный, его высоту МО найдем из прямоугольного треугольника МАО.
АО=АТ:2=√5
МО=√(МА² +АО² )=5/2
В прямоугольном ∆ МАО отрезок АН - высота, которая делит его на подобные треугольники, т. к. их острые углы равны (признак подобия прямоугольных треугольников).
Из подобия следует отношение:
АН:АМ=АО:МО
АН:[(√5):2]=√5: 5/2 ⇒ АН=1
а) Так как пересекающиеся МК и МЕ соответственно параллельны пересекающимся SC и SB, то плоскости МКЕ и CSB параллельны. АН ⊥плоскости КМЕ, следовательно, ее продолжение перпендикулярно плоскости CSB ( свойство прямой и параллельных плоскостей).
МО - средняя линия ∆ SAT, поэтому делит высоту АР, проведенную из вершины А, пополам.
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
б) Искомое расстояние - длина отрезка АН, перпендикулярного к плоскости КМЕ.
Т.к. АМ=МS; АЕ=ВЕ; АК=КС, то МК и МЕ – средние линии треугольников АМК и АМЕ.
∆ КАЕ - равнобедренный, его высота АО равна половине высоты АТ треугольника АВС.
АТ по т. Пифагора из ∆ АТС=√(АС² -ТС² )=2√5
∆ КМЕ - равнобедренный, его высоту МО найдем из прямоугольного треугольника МАО.
АО=АТ:2=√5
МО=√(МА² +АО² )=5/2
В прямоугольном ∆ МАО отрезок АН - высота, которая делит его на подобные треугольники, т. к. их острые углы равны (признак подобия прямоугольных треугольников).
Из подобия следует отношение:
АН:АМ=АО:МО
АН:[(√5):2]=√5: 5/2 ⇒ АН=1
а) Так как пересекающиеся МК и МЕ соответственно параллельны пересекающимся SC и SB, то плоскости МКЕ и CSB параллельны. АН ⊥плоскости КМЕ, следовательно, ее продолжение перпендикулярно плоскости CSB ( свойство прямой и параллельных плоскостей).
МО - средняя линия ∆ SAT, поэтому делит высоту АР, проведенную из вершины А, пополам.
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.