Дана трапеция ABCD с основаниями ВС и AD. Известно, что М – середина АВ, К – середина CD. Диагональ АС пересекает МК в точке N. Найдите сумму оснований трапеции, если МN = 12,5 см и NK = 14 см. Только ответ
1) Так как на луче точки В и С можно расположить двумя то нужно рассмотреть оба. В первом случае, если порядок точек А В С, отрезок АВ будет равен 7,8-2,5=5,3 см. Во втором случае при порядке точек А С В отрезок АВ будет равен 7,8+2,5=10,3 см.
2) Углы, образованные пересечением двух прямых, являются смежными и вертикальными. Берем два смежных угла. По условию один угол меньше другого на 22°. Сумма смежных углов 180°. Находим меньший угол - (180°-22°):2=79° Больший угол равен 79°+22°=101°
1. После построения MN получается треугольник MNE, подобный треугольнику CDE по первому признаку подобия (угол Е - общий, углы С и NME равны как соответственные углы при пересечении двух параллельных прямых CD и MN секущей СЕ). Поскольку треугольники подобны, то <MNE = <CDE = 68°2. Зная, что развернутый угол равен 180°, находим угол DNM:<DNM = 180 - <MNE = 180 - 68 = 112°3. Поскольку DM - биссектриса, то угол MDN = <CDE : 2 = 68 : 2 = 34°4. Зная два угла треугольника DMN, находим неизвестный угол:<DMN = 180 - <MDN - <DNM = 180 - 34 - 112 = 34°
1) Так как на луче точки В и С можно расположить двумя то нужно рассмотреть оба. В первом случае, если порядок точек А В С, отрезок АВ будет равен 7,8-2,5=5,3 см. Во втором случае при порядке точек А С В отрезок АВ будет равен 7,8+2,5=10,3 см.
2) Углы, образованные пересечением двух прямых, являются смежными и вертикальными. Берем два смежных угла. По условию один угол меньше другого на 22°. Сумма смежных углов 180°. Находим меньший угол - (180°-22°):2=79° Больший угол равен 79°+22°=101°
1) 5,3 см и 10,3см
2) 79° и 101°
3) 18° и 162°