дана трапеция ABCD1, альфа плоскость, альфа пересикает (ABCD)по прямой AD, т.е AD принадлежит альфа, т. M -середина AB,т.N- середина CD. Доказать: MN параллельно альфа. найти AD, если BC = 4 см, MN = 6 см
Треугольник с заданными сторонами имеет совершенно определённые углы, которые можно вычислить по теореме косинусов. Но можно обойтись и без этой теоремы. Угол в 97 градусов тупой, значит треугольник должен быть тупоугольным. Стоит доказать, что наш треугольник не такой и дело сделано, тем более, что нас не просили вычислить его углы. Наибольший угол в треугольнике лежит напротив наибольшей стороны - это 8 см. Теперь, по теореме Пифагора c²=a²+b²=5²+7²=25+49=74, с=√74≈8.6 см. Прямоугольный треугольник с катетами 5 и 7 см должен иметь гипотенузу в 8.6 см, а у нас сторона всего 8 см. Не хватает длины - не хватает градусов, значит наибольший угол этого треугольника - острый, то есть он меньше 97 градусов. Вот и всё!. ответ: не может.
дано:
ABCD - параллелограмм, РСАD - трапеция HR - средняя линия трапеции
Р ∧ ВС ∧ - типа пересекает
АР- биссектриса <А < типа угол
АD - 10 см
HR - 6 см
Найти: Равсd.
как мы знаем HR= 1/2(РС+АD)
подставляем 6=1/2 (РС + 10)
12=PC+10
PC= 12-10
PC= 2.
так PC мы узнали.
далее находим BP.
BP=AD-PC
BP=10-2
BP=8
так как <BAP=<PAD, то <BAP=<BPA,(признак параллелограмма, BC параллельно AD, как накрест лежащие.)
т.е. ΔABP равнобедренный, а так как BP=AB(свойство равнобедренного треугольника) то, AB=8.
Рabcd=AB+BC+AD+CD
Pabcd=8+10+10+8=36