Дана трапеция с основаниями 7см и 9см и высотой 5 см. Найдите угол между плоскостью трапеции и плоскостью её ортогональной проекции, если площадь этой проекции 20 см2. кто правильно ответит!
Дуга BD равна 2*27° = 54° (так как вписанный угол, опирающийся на эту дугу, равен половине градусной меры этой дуги).
Дуга BDAC = 180°, так как ВС - диаметр.
Дуга DAC = DDAC - BD = 180-54 = 126°. =>
<DBC = 63° (вписанный, равен половине градусной меры дуги, на которую он опирается).
9. Биссектрисы углов параллелограмма отсекают от него равнобедренные треугольники. В нашем случае эти биссектрисы имеют общую точку Е на стороне ВС. Значит
АВ = ВЕ и EC = CD => BC = 2AB.
AB = СD и BC = AD (противоположные стороны параллелограмма).
Треугольник АВС, МН-средняя линия=1/2АВ, проводим высоту СК на АВ, О-пересечение СК и МН, АВ=4х, СК=2у, площадь АВС=1/2*АВ*СК=1/2*4х*2у=4ху, треугольник АВС подобен треугольнику СМН по двум равным углам (АВ параллельна МН), угол В=уголСМН, уголА=уголСНМ как соответственные, МН=1/2АВ=4х/2=2х, в подобных треугольниках площади относятся как квадраты соответствующих сторон, АВ²/МН²=площадьАВС/площадьМСН, 16х²/4²=площадьАВС/площадьМСН,, т.е площадь АВС составляет 4 части, а площадь МСН=1 части, на долю АВМН=4-1=3 части=24, 1 часть=24/3=8=площадьМСН
8. <DBC=63°
9. P = 36 ед.
10. Не полное условие.
Объяснение:
Дуга BD равна 2*27° = 54° (так как вписанный угол, опирающийся на эту дугу, равен половине градусной меры этой дуги).
Дуга BDAC = 180°, так как ВС - диаметр.
Дуга DAC = DDAC - BD = 180-54 = 126°. =>
<DBC = 63° (вписанный, равен половине градусной меры дуги, на которую он опирается).
9. Биссектрисы углов параллелограмма отсекают от него равнобедренные треугольники. В нашем случае эти биссектрисы имеют общую точку Е на стороне ВС. Значит
АВ = ВЕ и EC = CD => BC = 2AB.
AB = СD и BC = AD (противоположные стороны параллелограмма).
Рabcd = 6*AB = 36 ед.